Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(7): 3428-3435, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38324263

RESUMO

Subjecting phosphotungstic acid solutions to low pH in combination with introduction of polyvalent cations led to the formation of nanostructured microspheres of approximately 2 µm in size, as shown by scanning electron microscopy, which were almost insoluble and resistant to degradation at neutral and high pH. These microspheres were composed of secondary nanospheres with diameters around 20 nm as revealed by transmission electron microscopy and atomic force microscopy. Investigations of the crystal structure of a potential intermediate of this process, namely, acidic lanthanum phosphotungstate, [La(H2O)9](H3O)3[PW12O40]2(H2O)19, showed a tight network of hydrogen bonding, permitting closer packing of phosphotungstic acid anions, thereby confirming the mechanism of the observed self-assembly process. The new material demonstrated promising electrochemical properties in oxygen evolution reactions with the high stability of the obtained electrode material.

2.
Dalton Trans ; 51(24): 9511-9521, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35695069

RESUMO

In the pursuit of understanding the factors guiding interactions between polyoxometalates (POMs) and biomolecules, several complexes between Keggin phosphomolybdate and diglycine have been produced at different acidity and salinity conditions, leading to difference in stoichiometry and in crystal structure. Principal factors determining how the POM and dipeptide interact appear to be pH, ionic strength of the medium, and the molar ratio of POM to peptide. An important effect turned out to be even the structure-directing role of the sodium cations coordinating carbonyl functions of the peptide bond. Given the interest in applying POMs in biological systems, these factors are highly relevant to consider. In the view of recent interest in using POMs as nano catalysts in peptide hydrolysis also the potential Keggin POM transformation in phosphate buffered saline medium was investigated leading to insight that nanoparticles of zirconium phosphate (ZrP) can be actual catalysts for breakdown of the peptide bond.


Assuntos
Compostos de Tungstênio , Ânions , Hidrólise , Peptídeos/química , Polieletrólitos , Compostos de Tungstênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA