Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Lancet Oncol ; 25(10): 1310-1324, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39362248

RESUMO

BACKGROUND: Ziftomenib (KO-539) is an oral selective menin inhibitor with known preclinical activity in menin-dependent acute myeloid leukaemia models. The primary objective of this study was to determine the recommended phase 2 dose in patients with relapsed or refractory acute myeloid leukaemia based on safety, pharmacokinetics, pharmacodynamics, and preliminary activity. METHODS: KOMET-001 is a multicentre, open-label, multi-cohort, phase 1/2 clinical trial of ziftomenib in adults with relapsed or refractory acute myeloid leukaemia. Results of the phase 1 study, conducted at 22 hospitals in France, Italy, Spain, and the USA, are presented here and comprise the dose-escalation (phase 1a) and dose-validation and expansion (phase 1b) phases. Eligible patients were aged 18 years or older, had relapsed or refractory acute myeloid leukaemia, and had an Eastern Cooperative Oncology Group performance status of 2 or less. For phase 1a, patients (all molecular subtypes) received ziftomenib (50-1000 mg) orally once daily in 28-day cycles. For phase 1b, patients with NPM1 mutations or with KMT2A rearrangements were randomly assigned (1:1) using third-party interactive response technology to two parallel dose cohorts (200 mg and 600 mg ziftomenib). Primary endpoints were maximum tolerated dose or recommended phase 2 dose in phase 1a, and safety, remission rates, and pharmacokinetics supporting recommended phase 2 dose determination in phase 1b. Analyses were performed in all patients who received at least one dose of ziftomenib (modified intention-to-treat population). Phase 1a/1b is complete. This trial is registered with ClinicalTrials.gov, NCT04067336, and the EU Clinical Trials register, EudraCT 2019-001545-41. FINDINGS: From Sept 12, 2019, to Aug 19, 2022, 83 patients received 50-1000 mg ziftomenib (39 [47%] were male and 44 [53%] were female). Median follow-up was 22·3 months (IQR 15·4-30·2). Of 83 patients, the most common grade 3 or worse treatment-emergent adverse events were anaemia (20 [24%]), febrile neutropenia (18 [22%]), pneumonia (16 [19%]), differentiation syndrome (12 [15%]), thrombocytopenia (11 [13%]), and sepsis (ten [12%]). Overall, 68 of 83 patients had serious adverse events, with two reported treatment-related deaths (one differentiation syndrome and one cardiac arrest). Differentiation syndrome rate and severity influenced the decision to halt enrolment of patients with KMT2A rearrangements. In Phase 1b, no responses were reported in patients treated at the 200 mg dose level. At the recommended phase 2 dose of 600 mg, nine (25%) of 36 patients with KMT2A rearrangement or NPM1 mutation had complete remission or complete remission with partial haematologic recovery. Seven (35%) of 20 patients with NPM1 mutation treated at the recommended phase 2 dose had a complete remission. INTERPRETATION: Ziftomenib showed promising clinical activity with manageable toxicity in heavily pretreated patients with relapsed or refractory acute myeloid leukaemia. Phase 2 assessment of ziftomenib combination therapy in the upfront and relapsed or refractory setting is ongoing. FUNDING: Kura Oncology.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Adulto , Recidiva Local de Neoplasia/tratamento farmacológico , Dose Máxima Tolerável , Resistencia a Medicamentos Antineoplásicos , Relação Dose-Resposta a Droga , Idoso de 80 Anos ou mais
2.
J Biol Chem ; 300(10): 107777, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276940

RESUMO

Menin is an essential oncogenic cofactor of MLL1 fusion proteins in acute leukemias and inhibitors of the menin-MLL1 interaction are under evaluation in clinical trials. Recent studies found emerging resistance to menin inhibitor treatment in patients with leukemia as a result of somatic mutations in menin. To understand how patient mutations in menin affect the interaction with MLL1, we performed systematic characterization of the binding affinity of these menin mutants (T349M, M327I, G331R and G331D) and the N-terminal fragment of MLL1. We also determined the crystal structures of menin patient mutants and their complexes with MLL1-derived peptides. We found that drug-resistant mutations in menin occur at a site adjacent to the MLL1 binding site, but they do not affect MLL1 binding to menin. On the contrary, our structural analysis shows that all these point mutations in menin generate steric clash with menin inhibitors. We also found that mutation G331D results in a very slow dissociation of MLL1 from menin and this mutant might be particularly difficult to inhibit with small molecule drugs. This work provides structural information to support the development of a new generation of small molecule inhibitors that overcome resistance caused by menin mutations.

3.
Eur J Med Chem ; 277: 116732, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106658

RESUMO

Thioamides, which are fascinating isosteres of amides, have garnered significant attention in drug discovery and medicinal chemistry programs, spanning peptides and small molecule compounds. This review provides an overview of the various applications of thioamides in small molecule therapeutic agents targeting a range of human diseases, including cancer, microbial infections (e.g., tuberculosis, bacteria, and fungi), viral infections, neurodegenerative conditions, analgesia, and others. Particular focus is given to design strategies of biologically active thioamide-containing compounds and their biological targets, such as kinases and histone methyltransferase ASH1L. Additionally, the review discusses the impact of the thioamide moiety on key properties, including potency, target interactions, physicochemical characteristics, and pharmacokinetics profiles. We hope that this work will offer valuable insights to inspire the future development of novel bioactive thioamide-containing compounds, facilitating their effective use in combating a wide array of human diseases.


Assuntos
Química Farmacêutica , Tioamidas , Tioamidas/química , Tioamidas/farmacologia , Tioamidas/síntese química , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Animais , Estrutura Molecular , Antineoplásicos/química , Antineoplásicos/farmacologia
4.
Leukemia ; 38(8): 1674-1687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890447

RESUMO

Chromosomal translocations of the nucleoporin 98 (NUP98) gene are found in acute myeloid leukemia (AML) patients leading to very poor outcomes. The oncogenic activity of NUP98 fusion proteins is dependent on the interaction between Mixed Lineage Leukemia 1 and menin. NUP98-rearranged (NUP98-r) leukemia cells also rely on specific kinases, including CDK6 and/or FLT3, suggesting that simultaneous targeting of these kinases and menin could overcome limited sensitivity to single agents. Here, we found that combinations of menin inhibitor, MI-3454, with kinase inhibitors targeting either CDK6 (Palbociclib) or FLT3 (Gilteritinib) strongly enhance the anti-leukemic effect of menin inhibition in NUP98-r leukemia models. We found strong synergistic effects of both combinations on cell growth, colony formation and differentiation in patient samples with NUP98 translocations. These combinations also markedly augmented anti-leukemic efficacy of menin inhibitor in Patient Derived Xenograft models of NUP98-r leukemia. Despite inhibiting two unrelated kinases, when Palbociclib or Gilteritinib were combined with the menin inhibitor, they affected similar pathways relevant to leukemogenesis, including cell cycle regulation, cell proliferation and differentiation. This study provides strong rationale for clinical translation of the combination of menin and kinase inhibitors as novel treatments for NUP98-r leukemia, supporting the unexplored combinations of epigenetic drugs with kinase inhibitors.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas , Translocação Genética , Humanos , Animais , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Linhagem Celular Tumoral , Compostos de Anilina , Pirazinas
5.
Eur J Med Chem ; 261: 115802, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37713805

RESUMO

The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Humanos , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Conformação Molecular
6.
Structure ; 31(10): 1200-1207.e5, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37527654

RESUMO

ASH1L is a histone methyltransferase that regulates gene expression through methylation of histone H3 on lysine K36. While the catalytic SET domain of ASH1L has low intrinsic activity, several studies found that it can be vastly enhanced by the interaction with MRG15 protein and proposed allosteric mechanism of releasing its autoinhibited conformation. Here, we found that full-length MRG15, but not the MRG domain alone, can enhance the activity of the ASH1L SET domain. In addition, we showed that catalytic activity of MRG15-ASH1L depends on nucleosome binding mediated by MRG15 chromodomain. We found that in solution MRG15 binds to ASH1L, but has no impact on the conformation of the SET domain autoinhibitory loop or the S-adenosylmethionine cofactor binding site. Moreover, MRG15 binding did not impair the potency of small molecule inhibitors of ASH1L. These findings suggest that MRG15 functions as an adapter that enhances ASH1L catalytic activity by recruiting nucleosome substrate.


Assuntos
Nucleossomos , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/química , Metilação , Histona-Lisina N-Metiltransferase/química , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo
7.
Cancer Res Commun ; 3(7): 1318-1334, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37492626

RESUMO

Loss of the tumor suppressor protein menin is a critical event underlying the formation of neuroendocrine tumors (NET) in hormone-expressing tissues including gastrinomas. While aberrant expression of menin impairs its tumor suppression, few studies explore the structure-function relationship of clinical multiple endocrine neoplasia, type 1 (MEN1) mutations in the absence of a complete LOH at both loci. Here, we determined whether clinical MEN1 mutations render nuclear menin unstable and lead to its functional inactivation. We studied the structural and functional implications of two clinical MEN1 mutations (R516fs, E235K) and a third variant (A541T) recently identified in 10 patients with gastroenteropancreatic (GEP)-NETs. We evaluated the subcellular localization and half-lives of the mutants and variant in Men1-null mouse embryo fibroblast cells and in hormone-expressing human gastric adenocarcinoma and NET cell lines. Loss of menin function was assessed by cell proliferation and gastrin gene expression assays. Finally, we evaluated the effect of the small-molecule compound MI-503 on stabilizing nuclear menin expression and function in vitro and in a previously reported mouse model of gastric NET development. Both the R516fs and E235K mutants exhibited severe defects in total and subcellular expression of menin, and this was consistent with reduced half-lives of these mutants. Mutated menin proteins exhibited loss of function in suppressing tumor cell proliferation and gastrin expression. Treatment with MI-503 rescued nuclear menin expression and attenuated hypergastrinemia and gastric hyperplasia in NET-bearing mice. Clinically defined MEN1 mutations and a germline variant confer pathogenicity by destabilizing nuclear menin expression. Significance: We examined the function of somatic and germline mutations and a variant of MEN1 sequenced from gastroenteropancreatic NETs. We report that these mutations and variant promote tumor cell growth and gastrin expression by rendering menin protein unstable and prone to increased degradation. We demonstrate that the menin-MLL (mixed lineage leukemia) inhibitor MI-503 restores menin protein expression and function in vitro and in vivo, suggesting a potential novel therapeutic approach to target MEN1 GEP-NETs.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Gastrinas/genética , Hormônios , Neoplasia Endócrina Múltipla Tipo 1/genética , Mutação , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética
8.
Bioorg Chem ; 135: 106477, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36989736

RESUMO

Cancer is one of the major causes of mortality and morbidity worldwide. Substantial research efforts have been made to develop new chemical entities with improved anticancer efficacy. 2-Aminobenzothiazole is an important class of heterocycles containing one sulfur and two nitrogen atoms, which is associated with a broad spectrum of medical and pharmacological activities, including antitumor, antibacterial, antimalarial, anti-inflammatory, and antiviral activities. In recent years, an extraordinary collection of potent and low-toxicity 2-aminobenzothiazole compounds have been discovered as new anticancer agents. Herein, we provide a comprehensive review of this class of compounds based on their activities against tumor-related proteins, including tyrosine kinases (CSF1R, EGFR, VEGFR-2, FAK, and MET), serine/threonine kinases (Aurora, CDK, CK, RAF, and DYRK2), PI3K kinase, BCL-XL, HSP90, mutant p53 protein, DNA topoisomerase, HDAC, NSD1, LSD1, FTO, mPGES-1, SCD, hCA IX/XII, and CXCR. In addition, the anticancer potentials of 2-aminobenzothiazole-derived chelators and metal complexes are also described here. Moreover, the design strategies, mechanism of actions, structure-activity relationships (SAR) and more advanced stages of pre-clinical development of 2-aminobenzothiazoles as new anticancer agents are extensively reviewed in this article. Finally, the examples that 2-aminobenzothiazoles showcase an advantage over other heterocyclic systems are also highlighted.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Antineoplásicos/química , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Benzotiazóis/química , Benzotiazóis/farmacologia
9.
Cancer Discov ; 13(3): 724-745, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455589

RESUMO

Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. SIGNIFICANCE: NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Cromatina/genética
10.
Nat Commun ; 13(1): 6989, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384931

RESUMO

Efficient determination of protein ligandability, or the propensity to bind small-molecules, would greatly facilitate drug development for novel targets. Ligandability is currently assessed using computational methods that typically consider the static structural properties of putative binding sites or by experimental fragment screening. Here, we evaluate ligandability of conserved BTB domains from the cancer-relevant proteins LRF, KAISO, and MIZ1. Using fragment screening, we discover that MIZ1 binds multiple ligands. However, no ligands are uncovered for the structurally related KAISO or LRF. To understand the principles governing ligand-binding by BTB domains, we perform comprehensive NMR-based dynamics studies and find that only the MIZ1 BTB domain exhibits backbone µs-ms time scale motions. Interestingly, residues with elevated dynamics correspond to the binding site of fragment hits and recently defined HUWE1 interaction site. Our data argue that examining protein dynamics using NMR can contribute to identification of cryptic binding sites, and may support prediction of the ligandability of novel challenging targets.


Assuntos
Domínio BTB-POZ , Sítios de Ligação , Proteínas/metabolismo , Ligantes , Ligação Proteica
11.
Cell Chem Biol ; 28(12): 1716-1727.e6, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34289376

RESUMO

GAS41 is an emerging oncogene overexpressed and implicated in multiple cancers, including non-small cell lung cancer (NSCLC). GAS41 is a dimeric protein that contains the YEATS domain, which is involved in the recognition of lysine-acylated histones. Here, we report the development of GAS41 YEATS inhibitors by employing a fragment-based screening approach. These inhibitors bind to GAS41 YEATS domain in a channel constituting a recognition site for acylated lysine on histone proteins. To enhance inhibitory activity, we developed a dimeric analog with nanomolar activity that blocks interactions of GAS41 with acetylated histone H3. Our lead compound engages GAS41 in cells, blocks proliferation of NSCLC cells, and modulates expression of GAS41-dependent genes, validating on-target mechanism of action. This study demonstrates that disruption of GAS41 protein-protein interactions may represent an attractive approach to target lung cancer cells. This work exemplifies the use of bivalent inhibitors as a general strategy to block challenging protein-protein interactions.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Tiofenos/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Amidas/química , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Estrutura Molecular , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Tiofenos/química , Fatores de Transcrição/metabolismo
12.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34138730

RESUMO

Aberrant activation of Wnt/ß-catenin pathway is a key driver of colorectal cancer (CRC) growth and of great therapeutic importance. In this study, we performed comprehensive CRISPR screens to interrogate the regulatory network of Wnt/ß-catenin signaling in CRC cells. We found marked discrepancies between the artificial TOP reporter activity and ß-catenin-mediated endogenous transcription and redundant roles of T cell factor/lymphoid enhancer factor transcription factors in transducing ß-catenin signaling. Compiled functional genomic screens and network analysis revealed unique epigenetic regulators of ß-catenin transcriptional output, including the histone lysine methyltransferase 2A oncoprotein (KMT2A/Mll1). Using an integrative epigenomic and transcriptional profiling approach, we show that KMT2A loss diminishes the binding of ß-catenin to consensus DNA motifs and the transcription of ß-catenin targets in CRC. These results suggest that KMT2A may be a promising target for CRCs and highlight the broader potential for exploiting epigenetic modulation as a therapeutic strategy for ß-catenin-driven malignancies.


Assuntos
Neoplasias Colorretais , beta Catenina , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
13.
Nat Chem Biol ; 17(7): 784-793, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155404

RESUMO

Polycomb repressive complex 1 (PRC1) is an essential chromatin-modifying complex that monoubiquitinates histone H2A and is involved in maintaining the repressed chromatin state. Emerging evidence suggests PRC1 activity in various cancers, rationalizing the need for small-molecule inhibitors with well-defined mechanisms of action. Here, we describe the development of compounds that directly bind to RING1B-BMI1, the heterodimeric complex constituting the E3 ligase activity of PRC1. These compounds block the association of RING1B-BMI1 with chromatin and inhibit H2A ubiquitination. Structural studies demonstrate that these inhibitors bind to RING1B by inducing the formation of a hydrophobic pocket in the RING domain. Our PRC1 inhibitor, RB-3, decreases the global level of H2A ubiquitination and induces differentiation in leukemia cell lines and primary acute myeloid leukemia (AML) samples. In summary, we demonstrate that targeting the PRC1 RING domain with small molecules is feasible, and RB-3 represents a valuable chemical tool to study PRC1 biology.


Assuntos
Complexo Repressor Polycomb 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Células K562 , Modelos Moleculares , Estrutura Molecular , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Ubiquitinação/efeitos dos fármacos
14.
Nat Commun ; 12(1): 2792, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990599

RESUMO

ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Animais , Antineoplásicos/química , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Desenho de Fármacos , Descoberta de Drogas , Inibidores Enzimáticos/química , Feminino , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/genética , Oncogenes , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética
15.
Mol Cancer Res ; 19(7): 1182-1195, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741715

RESUMO

Ewing sarcomas are driven by EWS-ETS fusions, most commonly EWS-FLI1, which promotes widespread metabolic reprogramming, including activation of serine biosynthesis. We previously reported that serine biosynthesis is also activated in Ewing sarcoma by the scaffolding protein menin through as yet undefined mechanisms. Here, we investigated whether EWS-FLI1 and/or menin orchestrate serine biosynthesis via modulation of ATF4, a stress-response gene that acts as a master transcriptional regulator of serine biosynthesis in other tumors. Our results show that in Ewing sarcoma, ATF4 levels are high and that ATF4 modulates transcription of core serine synthesis pathway (SSP) genes. Inhibition of either EWS-FLI1 or menin leads to loss of ATF4, and this is associated with diminished expression of SSP transcripts and proteins. We identified and validated an EWS-FLI1 binding site at the ATF4 promoter, indicating that the fusion can directly activate ATF4 transcription. In contrast, our results suggest that menin-dependent regulation of ATF4 is mediated by transcriptional and post-transcriptional mechanisms. Importantly, our data also reveal that the downregulation of SSP genes that occurs in the context of EWS-FLI1 or menin loss is indicative of broader inhibition of ATF4-dependent transcription. Moreover, we find that menin inhibition similarly leads to loss of ATF4 and the ATF4-dependent transcriptional signature in MLL-rearranged B-cell acute lymphoblastic leukemia, extending our findings to another cancer in which menin serves an oncogenic role. IMPLICATIONS: These studies provide new insights into metabolic reprogramming in Ewing sarcoma and also uncover a previously undescribed role for menin in the regulation of ATF4.


Assuntos
Fator 4 Ativador da Transcrição/genética , Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Proto-Oncogênicas/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/genética , Fator 4 Ativador da Transcrição/metabolismo , Vias Biossintéticas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Proteínas de Fusão Oncogênica/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/metabolismo , Serina/genética , Serina/metabolismo
17.
Nat Chem Biol ; 16(12): 1403-1410, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32868895

RESUMO

The nuclear receptor-binding SET domain (NSD) family of histone methyltransferases is associated with various malignancies, including aggressive acute leukemia with NUP98-NSD1 translocation. While NSD proteins represent attractive drug targets, their catalytic SET domains exist in autoinhibited conformation, presenting notable challenges for inhibitor development. Here, we employed a fragment-based screening strategy followed by chemical optimization, which resulted in the development of the first-in-class irreversible small-molecule inhibitors of the nuclear receptor-binding SET domain protein 1 (NSD1) SET domain. The crystal structure of NSD1 in complex with covalently bound ligand reveals a conformational change in the autoinhibitory loop of the SET domain and formation of a channel-like pocket suitable for targeting with small molecules. Our covalent lead-compound BT5-demonstrates on-target activity in NUP98-NSD1 leukemia cells, including inhibition of histone H3 lysine 36 dimethylation and downregulation of target genes, and impaired colony formation in an NUP98-NSD1 patient sample. This study will facilitate the development of the next generation of potent and selective inhibitors of the NSD histone methyltransferases.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucócitos/efeitos dos fármacos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Antineoplásicos/síntese química , Sítios de Ligação , Inibidores Enzimáticos/síntese química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Cinética , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Leucemia/genética , Leucemia/patologia , Leucócitos/enzimologia , Leucócitos/patologia , Modelos Moleculares , Proteína Meis1/genética , Proteína Meis1/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Especificidade por Substrato , Células Tumorais Cultivadas
18.
Eur J Med Chem ; 207: 112748, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882610

RESUMO

The interaction between menin and mixed lineage leukemia (MLL) was identified as an interesting target for treating some cancers including acute leukemia. On the basis of the known crystal structure of the MBM1-menin complex (MBM - menin binding motif), several cyclic peptides were designed. Elaboration of the effective cyclization strategy using a metathesis reaction allowed for a successfully large number of derivatives to be obtained. Subsequent optimization of the loop size, as well as N-terminal, central and C-terminal parts of the studied peptides resulted in structures exhibiting low nanomolar activities. A crystal structure of an inhibitor-menin complex revealed a compact conformation of the ligand molecule, which is stabilized not only by the introduction of a covalent linker but also three intramolecular hydrogen bonds. The inhibitor adopts a figure eight-like conformation, which perfectly fits the cleft of menin. We demonstrated that the development of compact, miniprotein-like structures is a highly effective approach for inhibition of protein-protein interactions.


Assuntos
Proteína de Leucina Linfoide-Mieloide/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Motivos de Aminoácidos , Humanos , Ligantes , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/química
19.
Future Med Chem ; 12(14): 1305-1326, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32551894

RESUMO

Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.


Assuntos
Epigênese Genética/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/genética , Bibliotecas de Moléculas Pequenas/química
20.
J Clin Invest ; 130(2): 981-997, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31855575

RESUMO

The protein-protein interaction between menin and mixed lineage leukemia 1 (MLL1) plays a critical role in acute leukemias with translocations of the MLL1 gene or with mutations in the nucleophosmin 1 (NPM1) gene. As a step toward clinical translation of menin-MLL1 inhibitors, we report development of MI-3454, a highly potent and orally bioavailable inhibitor of the menin-MLL1 interaction. MI-3454 profoundly inhibited proliferation and induced differentiation in acute leukemia cells and primary patient samples with MLL1 translocations or NPM1 mutations. When applied as a single agent, MI-3454 induced complete remission or regression of leukemia in mouse models of MLL1-rearranged or NPM1-mutated leukemia, including patient-derived xenograft models, through downregulation of key genes involved in leukemogenesis. We also identified MEIS1 as a potential pharmacodynamic biomarker of treatment response with MI-3454 in leukemia, and demonstrated that this compound is well tolerated and did not impair normal hematopoiesis in mice. Overall, this study demonstrates, for the first time to our knowledge, profound activity of the menin-MLL1 inhibitor as a single agent in clinically relevant PDX models of leukemia. These data provide a strong rationale for clinical translation of MI-3454 or its analogs for leukemia patients with MLL1 rearrangements or NPM1 mutations.


Assuntos
Antineoplásicos/farmacologia , Histona-Lisina N-Metiltransferase , Leucemia , Mutação , Proteína de Leucina Linfoide-Mieloide , Neoplasias Experimentais , Proteínas Nucleares , Proteínas Proto-Oncogênicas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células K562 , Leucemia/tratamento farmacológico , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteína Meis1/genética , Proteína Meis1/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Indução de Remissão , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA