Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14213, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902351

RESUMO

137Cs is a long-lived man-made radionuclide introduced in the environment worldwide at the early beginning of the nuclear Era during atmospheric nuclear testing's followed by the civil use of nuclear energy. Atmospheric fallout deposition of this major artificial radionuclide was reconstructed at the scale of French large river basins since 1945, and trajectories in French nuclearized rivers were established using sediment coring. Our results show that 137Cs contents in sediments of the studied rivers display a large spatial and temporal variability in response to the various anthropogenic pressures exerted on their catchment. The Loire, Rhone, and Rhine rivers were the most affected by atmospheric fallout from the global deposition from nuclear tests. Rhine and Rhone also received significant fallout from the Chernobyl accident in 1986 and recorded significant 137Cs concentrations in their sediments over the 1970-1985 period due to the regulatory releases from the nuclear industries. The Meuse River was notably impacted in the early 1970s by industrial releases. In contrast, the Seine River display the lowest 137Cs concentrations regardless of the period. All the rivers responded similarly over time to atmospheric fallout on their catchment, underlying a rather homogeneous resilience capacity of these river systems to this source of contamination.

2.
Sci Total Environ ; 931: 172849, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38685431

RESUMO

Sediment cores from three major French watersheds (Loire, Meuse and Moselle) have been dated by 137Cs and 210Pbxs from 1910 (Loire), 1947 (Meuse) and 1930 (Moselle) until the present in order to reconstruct trajectories of plastic additive contaminants including nine phthalate esters (PAEs) and seven organophosphate esters (OPEs), measured by gas chromatography-mass spectrometer (GC-MS-MS). Historical levels of ∑PAEs were higher than those of ∑OPEs in the Loire and the Moselle sediments, while ∑PAEs and ∑OPEs contents were of the same order of magnitude in the Meuse sediments. Although increases in concentrations do not evolve linearly, our results clearly indicate an increase in OPEs and PAEs concentrations from the 1950-1970 period onwards, compared with the first half of the 20th century. Our results show that, ∑OPE contents increase gradually over time in the Loire and Meuse rivers but evolve more randomly in the Moselle River. Trajectories of ∑PAEs depend on the river and no generality can be established, suggesting sedimentary reworking and/or local contamination. Data from this study allowed comparisons of contents of ∑OPEs and ∑PAEs between rivers, with ∑OPE concentrations in the Moselle River > Meuse River > Loire River, and concentrations of ∑PAEs in the Loire River > Moselle River > Meuse River. Among all PAEs, di(2-ethylhexyl) phthalate (DEHP) was the most abundant in all sediment samples, followed by diisobutyl phthalate (DiBP). Tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE in sediments of the three rivers. In addition, strong positive Pearson correlations were observed between organic matter (OM) parameters and OPE concentrations, and to a lesser extent, between OM parameters and PAE concentrations. This is particularly true for the Moselle River and for the Loire River, but less so for the Meuse River.

3.
Environ Pollut ; 348: 123655, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38467366

RESUMO

Although global plastic distribution is at the heart of 21st century environmental concerns, little information is available concerning how organic plastic additives contaminate freshwater sediments, which are often subject to strong anthropogenic pressure. Here, sediment core samples were collected in the Rhone and the Rhine watersheds (France), dated using 137Cs and 210Pbxs methods and analysed for nine phthalates (PAEs) and seven organophosphate esters (OPEs). The distribution of these organic contaminants was used to establish a chronological archive of plastic additive pollution from 1860 (Rhine) and 1930 (Rhone) until today. Sediment grain size and parameters related to organic matter (OM) were also measured as potential factors that may affect the temporal distribution of OPEs and PAEs in sediments. Our results show that OPE and PAE levels increased continuously in Rhone and Rhine sediments since the first records. In both rivers, ∑PAEs levels (from 9.1 ± 1.7 to 487.3 ± 27.0 ng g-1 dry weight (dw) ± standard deviation and from 4.6 ± 1.3 to 65.2 ± 11.2 ng g-1 dw, for the Rhine and the Rhone rivers, respectively) were higher than ∑OPEs levels (from 0.1 ± 0.1 to 79.1 ± 13.7 ng g-1 dw and from 0.6 ± 0.1 to 17.8 ± 2.3 ng g-1 dw, for Rhine and Rhone rivers, respectively). In both rivers, di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAE, followed by diisobutyl phthalate (DiBP), while tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE. No relationship was found between granulometry and additives concentrations, while organic matter helps explain the vertical distribution of PAEs and OPEs in the sediment cores. This study thus establishes a temporal trajectory of PAEs and OPEs contents over the last decades, leading to a better understanding of historical pollution in these two Western European rivers.


Assuntos
Ácidos Ftálicos , Ácidos Ftálicos/análise , Ésteres/análise , Dibutilftalato/análise , Poluição Ambiental/análise , Rios , Organofosfatos/análise , China
4.
Mar Pollut Bull ; 173(Pt A): 112963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34563960

RESUMO

Benthic exchanges of oxygen and nutrient at the sediment-water interface were investigated under light and dark conditions at 5 selected sites in a sub-tropical atoll. Mean oxygen fluxes were - 1316.5 ± 242.0 µmol m-2 h-1 and mean effluxes of oxygen under light conditions were 2231.7 ± 626.4 µmol m-2 h-1, presumably due to microphytobenthos present at the sediment-water interface. The consequences of this high related productivity was a systematic consumption of nutrients (DIN, PO4 and Si(OH)4) during almost all light incubations, contrasting with the effluxes of nutrients during dark incubations. Our results suggest that the sediments were net autotrophic and the oxygen balance in favor of microbenthic production when compared to community demand. Diurnal rates of gross benthic primary productivity were high (3423 ± 1192 µmol m-2 h-1) which emphasize the role of microphytobenthos in maintaining the oxygen reservoir in tropical lagoons.


Assuntos
Aquicultura , Água , Agricultura , Sedimentos Geológicos , Nutrientes , Oxigênio , Polinésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA