Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(11): e2203237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683305

RESUMO

Advanced nerve guidance conduits can provide an off-the-shelf alternative to autografts for the rehabilitation of segmental peripheral nerve injuries. In this study, the excellent processing ability of silk fibroin and the outstanding cell adhesion quality of spider dragline silk are combined to generate a silk-in-silk conduit for nerve repair. Fibroin-based silk conduits (SC) are characterized, and Schwann cells are seeded on the conduits and spider silk. Rat sciatic nerve (10 mm) defects are treated with an autograft (A), an empty SC, or a SC filled with longitudinally aligned spider silk fibers (SSC) for 14 weeks. Functional recovery, axonal re-growth, and re-myelination are assessed. The material characterizations determine a porous nature of the conduit. Schwann cells accept the conduit and spider silk as growth substrate. The in vivo results show a significantly faster functional regeneration of the A and SSC group compared to the SC group. In line with the functional results, the histomorphometrical analysis determines a comparable axon density of the A and SSC groups, which is significantly higher than the SC group. These findings demonstrate that the here introduced silk-in-silk nerve conduit achieves a similar regenerative performance as autografts largely due to the favorable guiding properties of spider dragline silk.


Assuntos
Fibroínas , Traumatismos dos Nervos Periféricos , Ratos , Animais , Seda/farmacologia , Seda/química , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Nervo Isquiático/fisiologia , Células de Schwann , Fibroínas/farmacologia , Fibroínas/química , Regeneração Nervosa/fisiologia
2.
Sci Rep ; 12(1): 15381, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100620

RESUMO

Breast cancer is a leading cause of death in female patients worldwide. Further research is needed to get a deeper insight into the mechanisms involved in the development of this devastating disease and to find new therapy strategies. The zebrafish is an established animal model, especially in the field of oncology, which has shown to be a promising candidate for pre-clinical research and precision-based medicine. To investigate cancer growth in vivo in zebrafish, one approach is to explore xenograft tumor models. In this article, we present the investigation of a juvenile xenograft zebrafish model using a Jones matrix optical coherence tomography (JM-OCT) prototype. Immunosuppressed wild-type fish at 1-month post-fertilization were injected with human breast cancer cells and control animals with phosphate buffered saline in the tail musculature. In a longitudinal study, the scatter, polarization, and vasculature changes over time were investigated and quantified in control versus tumor injected animals. A significant decrease in birefringence and an increase in scattering signal was detected in tumor injected zebrafish in comparison to the control once. This work shows the potential of JM-OCT as a non-invasive, label-free, three-dimensional, high-resolution, and tissue-specific imaging tool in pre-clinical cancer research based on juvenile zebrafish models.


Assuntos
Neoplasias da Mama , Tomografia de Coerência Óptica , Animais , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Estudos Longitudinais , Tomografia de Coerência Óptica/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA