Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Biol Chem ; 300(6): 107382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763337

RESUMO

ASCT2 (alanine serine cysteine transporter 2), a member of the solute carrier 1 family, mediates Na+-dependent exchange of small neutral amino acids across cell membranes. ASCT2 was shown to be highly expressed in tumor cells, making it a promising target for anticancer therapies. In this study, we explored the binding mechanism of the high-affinity competitive inhibitor L-cis hydroxyproline biphenyl ester (Lc-BPE) with ASCT2, using electrophysiological and rapid kinetic methods. Our investigations reveal that Lc-BPE binding requires one or two Na+ ions initially bound to the apo-transporter with high affinity, with Na1 site occupancy being more critical for inhibitor binding. In contrast to the amino acid substrate bound form, the final, third Na+ ion cannot bind, due to distortion of its binding site (Na2), thus preventing the formation of a translocation-competent complex. Based on the rapid kinetic analysis, the application of Lc-BPE generated outward transient currents, indicating that despite its net neutral nature, the binding of Lc-BPE in ASCT2 is weakly electrogenic, most likely because of asymmetric charge distribution within the amino acid moiety of the inhibitor. The preincubation with Lc-BPE also led to a decrease of the turnover rate of substrate exchange and a delay in the activation of substrate-induced anion current, indicating relatively slow Lc-BPE dissociation kinetics. Overall, our results provide new insight into the mechanism of binding of a prototypical competitive inhibitor to the ASCT transporters.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/química , Cinética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/química , Humanos , Sódio/metabolismo , Sódio/química , Animais , Ligação Competitiva
2.
ACS Chem Neurosci ; 14(23): 4252-4263, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37994790

RESUMO

Glutamate transporters are responsible for active transport of the major excitatory neurotransmitter glutamate across the cell membrane, regulating the extracellular glutamate concentration in the mammalian brain. Extracellular glutamate levels in the brain are usually in the submicromolar range but can increase by exocytosis, inhibition of cellular uptake, or through glutamate release by reverse transport, as well as other mechanisms, which can lead to neurodegeneration and neuronal cell death. Such conditions can be encountered upon energy deprivation during an ischemic stroke. Here, we developed acetoxymethyl (AM) ester prodrug-like derivatives of excitatory amino acid transporter (EAAT) inhibitors that permeate the cell membrane and are activated, most likely through hydrolysis by endogenous cellular esterases, to form the active EAAT inhibitor. Upon increase in external K+ concentration, the inhibitors block glutamate efflux by EAAT reverse transport. Using a novel high-affinity fluorescent prodrug-like inhibitor, dl-threo-9-anthracene-methoxy-aspartate (TAOA) AM ester, we demonstrate that the precursor rapidly accumulates inside cells. Electrophysiological methods and fluorescence assays utilizing the iGluSnFR external glutamate sensor were used to demonstrate the efficacy of AM ester-protected inhibitors in inhibiting K+-mediated glutamate release. Together, our results provide evidence for a novel method to potentially prevent glutamate release by reverse transport under pathophysiological conditions in a model cell system, as well as in human astrocytes, while leaving glutamate uptake under physiological conditions operational. This method could have wide-ranging applications in the prevention of glutamate-induced neuronal cell death.


Assuntos
Ácido Glutâmico , Pró-Fármacos , Animais , Humanos , Ácido Glutâmico/metabolismo , Pró-Fármacos/farmacologia , Transporte Biológico , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ésteres , Mamíferos/metabolismo
3.
Elife ; 122023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856089

RESUMO

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter belonging to the SLC1 family of solute carriers. It plays a key role in the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, apotent, non-competitive inhibitor of EAAT1. Alanine serine cysteine transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine between intracellular and extracellular compartments . ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here, we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na+ binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2. Guided by computational modeling using ligand docking and molecular dynamics simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double-mutant transporter, 100% of the inhibitory effect of UCPH-101 could be restored, and the apparent affinity was increased (Ki = 4.3 µM), much closer to the EAAT1 value of 0.6 µM. Finally, we identify a novel non-competitive ASCT2 inhibitor, through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective ASCT2 allosteric inhibitors can be designed .


Assuntos
Aminoácidos , Glutamina , Animais , Glutamina/metabolismo , Ácido Glutâmico , Sítios de Ligação , Alanina , Transportador 1 de Aminoácido Excitatório/metabolismo , Serina , Antígenos de Histocompatibilidade Menor/genética , Mamíferos/metabolismo
4.
J Phys Org Chem ; 35(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36568026

RESUMO

The glutamine transporter ASCT2 is highly overexpressed in cancer cells. Block of glutamine uptake by ASCT2 is a potential strategy to inhibit growth of cancer cells. However, pharmacology of the ASCT2 binding site is not well established. In this work, we report the computational docking to the binding site, and the synthesis of a new class of ASCT2 inhibitors based on the novel L-hydroxyhomoserine scaffold. While these compounds inhibit the ASCT2 leak anion conductance, as expected for competitive inhibitors, they did not block leak conductance in glutamate transporters (EAAT1-3 and EAAT5). They were also ineffective with respect to subtype ASCT1, which has >57% amino acid sequence similarity to ASCT2. Molecular docking studies agree very well with the experimental results and suggest specific polar interactions in the ASCT2 binding site. Our findings add to the repertoire of ASCT2 inhibitors and will aid in further studies of ASCT2 pharmacology.

5.
Biomolecules ; 12(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053261

RESUMO

Neutral amino acid transporters ASCT1 and ASCT2 are two SLC1 (solute carrier 1) family subtypes, which are specific for neutral amino acids. The other members of the SLC1 family are acidic amino acid transporters (EAATs 1-5). While the functional similarities and differences between the EAATs have been well studied, less is known about how the subtypes ASCT1 and 2 differ in kinetics and function. Here, by performing comprehensive electrophysiological analysis, we identified similarities and differences between these subtypes, as well as novel functional properties, such as apparent substrate affinities of the inward-facing conformation (in the range of 70 µM for L-serine as the substrate). Key findings were: ASCT1 has a higher apparent affinity for Na+, as well as a larger [Na+] dependence of substrate affinity compared to ASCT2. However, the general sequential Na+/substrate binding mechanism with at least one Na+ binding first, followed by amino acid substrate, followed by at least one more Na+ ion, appears to be conserved between the two subtypes. In addition, the first Na+ binding step, presumably to the Na3 site, occurs with high apparent affinity (<1 mM) in both transporters. In addition, ASCT1 and 2 show different substrate selectivities, where ASCT1 does not respond to extracellular glutamine. Finally, in both transporters, we measured rapid, capacitive charge movements upon application and removal of amino acid, due to rearrangement of the translocation equilibrium. This charge movement decays rapidly, with a time constant of 4-5 ms and recovers with a time constant in the 15 ms range after substrate removal. This places a lower limit on the turnover rate of amino acid exchange by these two transporters of 60-80 s-1.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Serina , Alanina/metabolismo , Sistema ASC de Transporte de Aminoácidos/química , Sistema ASC de Transporte de Aminoácidos/metabolismo , Cisteína , Cinética , Serina/metabolismo
7.
Neurochem Res ; 47(1): 148-162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33550531

RESUMO

Plasma membrane glutamate transporters move glutamate across the cell membrane in a process that is thought to involve elevator-like movement of the transport domain relative to the static trimerization domain. Conformational changes associated with this elevator-like movement have been blocked by covalent crosslinking of cysteine pairs inserted strategically in several positions in the transporter structure, resulting in inhibition of steady-state transport activity. However, it is not known how these crosslinking restraints affect other partial reactions of the transporter that were identified based on pre-steady-state kinetic analysis. Here, we re-examine two different introduced cysteine pairs in the rat glutamate transporter EAAC1 recombinantely expressed in HEK293 cells, W440C/K268C and K64C/V419C, with respect to the molecular mechanism of their impairment of transporter function. Pre-steady-state kinetic studies of glutamate-induced partial reactions were performed using laser photolysis of caged glutamate to achieve sub-millisecond time resolution. Crosslinking of both cysteine pairs abolished steady-state transport current, as well as the majority of pre-steady-state glutamate-induced charge movements, in both forward and reverse transport mode, suggesting that it is not only the elevator-like movement associated with translocation, but also other transporter partial reactions that are inhibited. In contrast, sodium binding to the empty transporter, and glutamate-induced anion conductance were still intact after the W440C/K268C crosslink. Our results add to the previous mechanistic view of how covalent restraints of the transporter affect function and structural changes linked to individual steps in the transport cycle.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Transportador 3 de Aminoácido Excitatório , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Transportador 3 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Cinética , Ratos , Sódio
8.
Front Physiol ; 12: 777050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867484

RESUMO

SLC6A14 (solute carrier family 6 member 14) is an amino acid transporter, driven by Na+ and Cl- co-transport, whose structure, function, and molecular and kinetic mechanism have not been well characterized. Its broad substrate selectivity, including neutral and cationic amino acids, differentiates it from other SLC6 family members, and its proposed involvement in nutrient transport in several cancers suggest that it could become an important drug target. In the present study, we investigated SLC6A14 function and its kinetic mechanism after expression in human embryonic kidney (HEK293) cells, including substrate specificity and voltage dependence under various ionic conditions. We applied rapid solution exchange, voltage jumps, and laser photolysis of caged alanine, allowing sub-millisecond temporal resolution, to study SLC6A14 steady state and pre-steady state kinetics. The results highlight the broad substrate specificity and suggest that extracellular chloride enhances substrate transport but is not required for transport. As in other SLC6 family members, Na+ binding to the substrate-free transporter (or conformational changes associated with it) is electrogenic and is likely rate limiting for transporter turnover. Transient current decaying with a time constant of <1ms is also observed after rapid amino acid application, both in forward transport and homoexchange modes, indicating a slightly electrogenic, but fast and not rate-limiting substrate translocation step. Our results, which are consistent with kinetic modeling, suggest rapid transporter turnover rate and substrate translocation with faster kinetics compared with other SLC6 family members. Together, these results provided novel information on the SLC6A14 transport cycle and mechanism, expanding our understanding of SLC6A14 function.

9.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507995

RESUMO

ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potential strategy for cancer therapy. Here, we rationally designed stereospecific inhibitors exploiting specific subpockets in the substrate binding site using computational modeling and cryo-electron microscopy (cryo-EM). The final structures combined with molecular dynamics simulations reveal multiple pharmacologically relevant conformations in the ASCT2 binding site as well as a previously unknown mechanism of stereospecific inhibition. Furthermore, this integrated analysis guided the design of a series of unique ASCT2 inhibitors. Our results provide a framework for future development of cancer therapeutics targeting nutrient transport via ASCT2, as well as demonstrate the utility of combining computational modeling and cryo-EM for solute carrier ligand discovery.


Assuntos
Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Ligação Competitiva , Química Computacional , Microscopia Crioeletrônica/métodos , Glutamina/metabolismo , Preparações Farmacêuticas/administração & dosagem , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sítios de Ligação , Desenho de Fármacos , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Simulação de Acoplamento Molecular , Preparações Farmacêuticas/química , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
10.
PLoS One ; 16(4): e0250635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891665

RESUMO

Glutamate transporters are essential for removing the neurotransmitter glutamate from the synaptic cleft. Glutamate transport across the membrane is associated with elevator-like structural changes of the transport domain. These structural changes require initial binding of the organic substrate to the transporter. Studying the binding pathway of ligands to their protein binding sites using molecular dynamics (MD) simulations requires micro-second level simulation times. Here, we used three methods to accelerate aspartate binding to the glutamate transporter homologue Gltph and to investigate the binding pathway. 1) Two methods using user-defined forces to prevent the substrate from diffusing too far from the binding site. 2) Conventional MD simulations using very high substrate concentrations in the 0.1 M range. The final, substrate bound states from these methods are comparable to the binding pose observed in crystallographic studies, although they show more flexibility in the side chain carboxylate function. We also captured an intermediate on the binding pathway, where conserved residues D390 and D394 stabilize the aspartate molecule. Finally, we investigated glutamate binding to the mammalian glutamate transporter, excitatory amino acid transporter 1 (EAAT1), for which a crystal structure is known, but not in the glutamate-bound state. Overall, the results obtained in this study reveal new insights into the pathway of substrate binding to glutamate transporters, highlighting intermediates on the binding pathway and flexible conformational states of the side chain, which most likely become locked in once the hairpin loop 2 closes to occlude the substrate.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Simulação de Dinâmica Molecular , Sistema X-AG de Transporte de Aminoácidos/química , Ácido Aspártico/química , Sítios de Ligação , Transportador 1 de Aminoácido Excitatório/química , Transportador 1 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Humanos , Ligação Proteica , Especificidade por Substrato
11.
J Gen Physiol ; 152(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32835376

RESUMO

In the mammalian glutamate transporters, countertransported intracellular K+ is essential for relocating the glutamate binding site to the extracellular side of the membrane. This K+-dependent process is believed to be rate limiting for the transport cycle. In contrast, extracellular K+ induces glutamate release upon transporter reversal. Here, we analyzed potential K+ binding sites using molecular dynamics (MD) simulations and site-directed mutagenesis. Two candidate sites were identified by spontaneous K+ binding in MD simulations, one site (K1 site) overlapping with the Na1 Na+ binding site and the K2 site being localized under hairpin loop 2 (HP2). Mutations to conserved amino acid residues in these sites resulted in several transporters that were defective in K+-induced reverse transport and which bound K+ with reduced apparent affinity compared with the wild-type transporter. However, external K+ interaction was abolished in only one mutant transporter EAAC1D454A in the K1 site. Our results, for the first time, directly demonstrate effects of K1-site mutations on K+ binding, in contrast to previous reports on K+ binding sites based on indirect evidence. We propose that K+ binding to the K1 site is responsible for catalyzing the relocation step, whereas binding to the K2 site may have an as-of-yet unidentified regulatory function.


Assuntos
Transportador 3 de Aminoácido Excitatório , Potássio , Animais , Sítios de Ligação , Transportador 3 de Aminoácido Excitatório/fisiologia , Ácido Glutâmico , Potássio/metabolismo , Sódio/metabolismo
12.
Biochem J ; 477(8): 1443-1457, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32242892

RESUMO

Glutamine transport across cell membranes is performed by a variety of transporters, including the alanine serine cysteine transporter 2 (ASCT2). The substrate-binding site of ASCT2 was proposed to be specific for small amino acids with neutral side chains, excluding basic substrates such as lysine. A series of competitive inhibitors of ASCT2 with low µM affinity were developed previously, on the basis of the 2,4-diaminobutyric acid (DAB) scaffold with a potential positive charge in the side chain. Therefore, we tested whether basic amino acids with side chains shorter than lysine can interact with the ASCT2 binding site. Molecular docking of L-1,3-diaminopropionic acid (L-DAP) and L-DAB suggested that these compounds bind to ASCT2. Consistent with this prediction, L-DAP and L-DAB, but not ornithine, lysine or D-DAP, elicited currents when applied to ASCT2-expressing cells. The currents were carried by anions and showed the hallmark properties of ASCT2 currents induced by transported substrates. The L-DAP response could be eliminated by a competitive ASCT2 inhibitor, suggesting that binding occurs at the substrate binding site. The KM for L-DAP was weakly voltage dependent. Furthermore, the pH dependence of the L-DAP response showed that the compound can bind in several protonation states. Together, these results suggest that the ASCT2 binding site is able to recognize L-amino acids with short, basic side chains, such as the L-DAP derivative ß-N-methylamino-l-Alanine (BMAA), a well-studied neurotoxin. Our results expand the substrate specificity of ASCT2 to include amino acid substrates with positively charged side chains.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Aminoácidos Básicos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/química , Sistema ASC de Transporte de Aminoácidos/genética , Aminoácidos Básicos/química , Aminobutiratos/química , Aminobutiratos/metabolismo , Animais , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Cinética , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Especificidade por Substrato
13.
ACS Sens ; 4(9): 2358-2366, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31393114

RESUMO

Glutamate is the main excitatory neurotransmitter in the mammalian central nervous system. Excitatory amino acid transporters (EAATs) are a family of transmembrane transporters responsible for glutamate uptake into cells, and their malfunction is related to a variety of diseases, including neurodegenerative diseases and stroke. Screening for and developing inhibitors of EAATs as well as related transporters is a significant field of study for biomedical and pharmaceutical applications. Rapid, high-throughput methods are critical for the study of glutamate transporters, and fluorescent methods are appealing for this purpose as compared to more traditional electrophysiological methods. In this study, we present a method for studying glutamate transporters and inhibitors by utilizing a mutated version of a yellow fluorescent protein (YFP) highly sensitive to quenching by anions (mClY). We applied this YFP variant to fluorescent imaging of anion flux in HEK293 cells caused by transiently expressed excitatory amino acid carrier 1 (EAAC1) and excitatory amino acid transporter 2 (EAAT2) and its inhibition by competitive blockers. This method enables rapid identification of inhibitors and, potentially, activators of EAAT function, which is critical for glutamate transport research.


Assuntos
Ácido Glutâmico/metabolismo , Halogênios/metabolismo , Imagem Óptica/métodos , Proteínas de Bactérias/genética , Transporte Biológico , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Fatores de Tempo
14.
J Biol Chem ; 294(32): 12180-12190, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235523

RESUMO

Plasma membrane-associated glutamate transporters play a key role in signaling by the major excitatory neurotransmitter glutamate. Uphill glutamate uptake into cells is energetically driven by coupling to co-transport of three Na+ ions. In exchange, one K+ ion is counter-transported. Currently accepted transport mechanisms assume that Na+ and K+ effects are exclusive, resulting from competition of these cations at the binding level. Here, we used electrophysiological analysis to test the effects of K+ and Na+ on neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1; the rat homologue of human excitatory amino acid transporter 3 (EAAT3)). Unexpectedly, extracellular K+ application to EAAC1 induced anion current, but only in the presence of Na+ This result could be explained with a K+/Na+ co-binding state in which the two cations simultaneously bind to the transporter. We obtained further evidence for this co-binding state, and its anion conductance, by analyzing transient currents when Na+ was exchanged for K+ and effects of the [K+]/[Na+] ratio on glutamate affinity. Interestingly, we observed the K+/Na+ co-binding state not only in EAAC1 but also in the subtypes EAAT1 and -2, which, unlike EAAC1, conducted anions in response to K+ only. We incorporated these experimental findings in a revised transport mechanism, including the K+/Na+ co-binding state and the ability of K+ to activate anion current. Overall, these results suggest that differentiation between Na+ and K+ does not occur at the binding level but is conferred by coupling of cation binding to conformational changes. These findings have implications also for other exchangers.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Ligação Competitiva , Cátions/química , Transportador 3 de Aminoácido Excitatório/química , Transportador 3 de Aminoácido Excitatório/genética , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Cinética , Técnicas de Patch-Clamp , Potássio/química , Ligação Proteica , Sódio/química
15.
ACS Chem Biol ; 14(5): 1002-1010, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31026143

RESUMO

Plasma-membrane glutamate transporters of the excitatory amino acid transporter (EAAT) family are important for maintaining a low glutamate concentration in the extracellular space of the mammalian brain. Glutamate is believed to be transported in its negatively charged form and energetically driven by the cotransport of three sodium ions, at least two of which are bound within the dielectric of the membrane. It was hypothesized that binding of substrates and competitive inhibitors is also electrogenic because the binding site is located near the center of the membrane. To test this hypothesis, we rapidly applied a low-affinity competitive inhibitor, kainate, to the glutamate transporter subtype EAAT2, resulting in outward transient current caused by movement of net negative charge of the inhibitor into the low dielectric of the protein/membrane. Consistent with these data, rate constants for inhibitor dissociation and binding were also voltage dependent. Our results are supported by electrostatic calculations and molecular dynamics simulations of spontaneous substrate dissociation, showing that the substrate and inhibitor binding site is located within the membrane environment of low dielectric constant. Charge movement caused by binding of negatively charged amino acid substrate is compensated by the charge of cotransported Na+ ion(s), thus preventing inhibition of substrate binding at negative membrane potentials. This charge compensation mechanism may be relevant for other Na+-driven transporters which recognize negatively charged substrates.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Fenômenos Biofísicos , Encéfalo/metabolismo , Ácido Caínico/metabolismo , Cinética , Mamíferos , Potenciais da Membrana , Simulação de Dinâmica Molecular , Especificidade por Substrato
16.
J Gen Physiol ; 151(3): 357-368, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718375

RESUMO

The neutral amino acid transporter alanine serine cysteine transporter 2 (ASCT2) belongs to the solute carrier 1 (SLC1) family of transport proteins and transports neutral amino acids, such as alanine and glutamine, into the cell in exchange with intracellular amino acids. This amino acid transport is sodium dependent, but not driven by the transmembrane Na+ concentration gradient. Glutamine transport by ASCT2 is proposed to be important for glutamine homoeostasis in rapidly growing cancer cells to fulfill the energy and nitrogen demands of these cells. Thus, ASCT2 is thought to be a potential anticancer drug target. However, the pharmacology of the amino acid binding site is not well established. Here, we report on the synthesis and characterization of a novel class of ASCT2 inhibitors based on an amino acid scaffold with a sulfonamide/sulfonic acid ester linker to a hydrophobic group. The compounds were designed based on an improved ASCT2 homology model using the human glutamate transporter hEAAT1 crystal structure as a modeling template. The compounds were shown to inhibit with a competitive mechanism and a potency that scales with the hydrophobicity of the side chain. The most potent compound binds with an apparent affinity, K i, of 8 ± 4 µM and can block the alanine response with a K i of 40 ± 23 µM at 200 µM alanine concentration. Computational analysis predicts inhibitor interactions with the binding site through molecular docking. In conclusion, the sulfonamide/sulfonic acid ester scaffold provides facile synthetic access to ASCT2 inhibitors with a potentially large variability in chemical space of the hydrophobic side chain. These inhibitors will be useful chemical tools to further characterize the role of ASCT2 in disease as well as improve our understanding of inhibition mechanisms of this transporter.


Assuntos
Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Moduladores de Transporte de Membrana/farmacologia , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Ácidos Sulfônicos/farmacologia , Sistema ASC de Transporte de Aminoácidos/química , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sítios de Ligação , Ésteres/química , Células HEK293 , Humanos , Moduladores de Transporte de Membrana/química , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica , Sulfonamidas/química , Ácidos Sulfônicos/química
17.
Biochemistry ; 57(46): 6538-6550, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30345745

RESUMO

Dynein adaptor proteins such as Bicaudal D2 (BicD2) are integral components of the dynein transport machinery, as they recognize cargoes for cell cycle-specific transport and link them to the motor complex. Human BicD2 switches from selecting secretory and Golgi-derived vesicles for transport in G1 and S phase (by recognizing Rab6GTP), to selecting the nucleus for transport in G2 phase (by recognizing nuclear pore protein Nup358), but the molecular mechanisms governing this switch are elusive. Here, we have developed a quantitative model for BicD2/cargo interactions that integrates affinities, oligomeric states, and cellular concentrations of the reactants. BicD2 and cargo form predominantly 2:2 complexes. Furthermore, the affinity of BicD2 toward its cargo Nup358 is higher than that toward Rab6GTP. Based on our calculations, an estimated 1000 BicD2 molecules per cell would be recruited to the nucleus through Nup358 in the absence of regulation. Notably, RanGTP is a negative regulator of the Nup358/BicD2 interaction that weakens the affinity by a factor of 10 and may play a role in averting dynein recruitment to the nucleus outside of the G2 phase. However, our quantitative model predicts that an additional negative regulator remains to be identified. In the absence of negative regulation, the affinity of Nup358 would likely be sufficient to recruit BicD2 to the nucleus in G2 phase. Our quantitative model makes testable predictions of how cellular transport events are orchestrated. These transport processes are important for brain development, cell cycle control, signaling, and neurotransmission at synapses.


Assuntos
Núcleo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Chaperonas Moleculares/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteínas rab de Ligação ao GTP/química
18.
Front Chem ; 6: 279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30137742

RESUMO

The Alanine-Serine-Cysteine transporter (SLC1A5, ASCT2), is a neutral amino acid exchanger involved in the intracellular homeostasis of amino acids in peripheral tissues. Given its role in supplying glutamine to rapidly proliferating cancer cells in several tumor types such as triple-negative breast cancer and melanoma, ASCT2 has been identified as a key drug target. Here we use a range of computational methods, including homology modeling and ligand docking, in combination with cell-based assays, to develop hypotheses for structure-function relationships in ASCT2. We perform a phylogenetic analysis of the SLC1 family and its prokaryotic homologs to develop a useful multiple sequence alignment for this protein family. We then generate homology models of ASCT2 in two different conformations, based on the human EAAT1 structures. Using ligand enrichment calculations, the ASCT2 models are then compared to crystal structures of various homologs for their utility in discovering ASCT2 inhibitors. We use virtual screening, cellular uptake and electrophysiology experiments to identify a non-amino acid ASCT2 inhibitor that is predicted to interact with the ASCT2 substrate binding site. Our results provide insights into the structural basis of substrate specificity in the SLC1 family, as well as a framework for the design of future selective and potent ASCT2 inhibitors as cancer therapeutics.

19.
J Phys Chem B ; 122(1): 28-39, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29218993

RESUMO

Glutamate transporters maintain a large glutamate concentration gradient across synaptic membranes and are, thus, critical for functioning of the excitatory synapse. Mammalian glutamate transporters concentrate glutamate inside cells through energetic coupling of glutamate flux to the transmembrane concentration gradient of Na+. Structural models based on an archeal homologue, GltPh, suggest an elevator-like carrier mechanism. However, the energetic determinants of this carrier-based movement are not well understood. Although electrostatics play an important role in governing these energetics, their implication on transport dynamics has not been studied. Here, we combine a pre-steady-state kinetic analysis of the translocation equilibrium with electrostatic computations to gain insight into the energetics of the translocation process. Our results show the biphasic nature of translocation, consistent with the existence of an intermediate on the translocation pathway. In the absence of voltage, the equilibrium is shifted to the outward-facing configuration. Electrostatic computations confirm the intermediate state and show that the elevator-like movement is energetically feasible in the presence of bound Na+ ions, whereas a substrate-hopping model is energetically prohibitive. Our results highlight the critical contribution of charge compensation to transport and add to results from previous molecular dynamics simulations for improved understanding of the glutamate translocation process.


Assuntos
Transportador 3 de Aminoácido Excitatório/química , Transportador 3 de Aminoácido Excitatório/metabolismo , Animais , Archaea , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Cinética , Potenciais da Membrana , Modelos Químicos , Simulação de Dinâmica Molecular , Ratos , Eletricidade Estática , Termodinâmica
20.
Bioorg Med Chem Lett ; 27(3): 398-402, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057420

RESUMO

The glutamine transporter ASCT2 has been identified as a promising target to inhibit rapid growth of cancer cells. However, ASCT2 pharmacology is not well established. In this report, we performed a systematic structure activity analysis of a series of substituted benzylproline derivatives. Substitutions on the phenyl ring resulted in compounds with characteristics of ASCT2 inhibitors. Apparent binding affinity increased with increasing hydrophobicity of the side chain. In contrast, interaction of the ASCT2 binding site with specific positions on the phenyl ring was not observed. The most potent compound inhibits the ASCT2 anion conductance with a Ki of 3µM, which is in the same range as that of more bulky and higher molecular weight inhibitors recently reported by others. The experimental results are consistent with computational analysis based on docking of the inhibitors against an ASCT2 homology model. The benzylproline scaffold provides a valuable tool for further improving binding potency of future ASCT2 inhibitors.


Assuntos
Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Prolina/análogos & derivados , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Prolina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA