Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38066823

RESUMO

One of the most frequently detected neoplasms in women in Italy is breast cancer, for which high-sensitivity diagnostic techniques are essential for early diagnosis in order to minimize mortality rates. As addressed in Part I of this work, we have seen how conditions such as high glandular density or limitations related to mammographic sensitivity have driven the optimization of technology and the use of increasingly advanced and specific diagnostic methodologies. While the first part focused on analyzing the use of a mammography machine from a physical and dosimetric perspective, in this paper, we will examine other techniques commonly used in breast imaging: contrast-enhanced mammography, digital breast tomosynthesis, radio imaging, and include some notes on image processing. We will also explore the differences between these various techniques to provide a comprehensive overview of breast lesion detection techniques. We will examine the strengths and weaknesses of different diagnostic modalities and observe how, with the implementation of improvements over time, increasingly effective diagnoses can be achieved.

2.
J Pers Med ; 13(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38138910

RESUMO

Purpose: The purpose of this meta-analysis is to investigate the effectiveness of supplementing screening mammography with three-dimensional automated breast ultrasonography (3D ABUS) in improving breast cancer detection rates in asymptomatic women with dense breasts. Materials and Methods: We conducted a thorough review of scientific publications comparing 3D ABUS and mammography. Articles for inclusion were sourced from peer-reviewed journal databases, namely MEDLINE (PubMed) and Scopus, based on an initial screening of their titles and abstracts. To ensure a sufficient sample size for meaningful analysis, only studies evaluating a minimum of 20 patients were retained. Eligibility for evaluation was further limited to articles written in English. Additionally, selected studies were required to have participants aged 18 or above at the time of the study. We analyzed 25 studies published between 2000 and 2021, which included a total of 31,549 women with dense breasts. Among these women, 229 underwent mammography alone, while 347 underwent mammography in combination with 3D ABUS. The average age of the women was 50.86 years (±10 years standard deviation), with a range of 40-56 years. In our efforts to address and reduce bias, we applied a range of statistical analyses. These included assessing study variation through heterogeneity assessment, accounting for potential study variability using a random-effects model, exploring sources of bias via meta-regression analysis, and checking for publication bias through funnel plots and the Egger test. These methods ensured the reliability of our study findings. Results: According to the 25 studies included in this metanalysis, out of the total number of women, 27,495 were diagnosed with breast cancer. Of these, 211 were diagnosed through mammography alone, while an additional 329 women were diagnosed through the combination of full-field digital mammography (FFDSM) and 3D ABUS. This represents an increase of 51.5%. The rate of cancers detected per 1000 women screened was 23.25‱ (95% confidence interval [CI]: 21.20, 25.60; p < 0.001) with mammography alone. In contrast, the addition of 3D ABUS to mammography increased the number of tumors detected to 20.95‱ (95% confidence interval [CI]: 18.50, 23; p < 0.001) per 1000 women screened. Discussion: Even though variability in study results, lack of long-term outcomes, and selection bias may be present, this systematic review and meta-analysis confirms that supplementing mammography with 3D ABUS increases the accuracy of breast cancer detection in women with ACR3 to ACR4 breasts. Our findings suggest that the combination of mammography and 3D ABUS should be considered for screening women with dense breasts. Conclusions: Our research confirms that adding 3D automated breast ultrasound to mammography-only screening in patients with dense breasts (ACR3 and ACR4) significantly (p < 0.05) increases the cancer detection rate.

3.
J Pers Med ; 13(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241032

RESUMO

Breast cancer is the most common and most commonly diagnosed non-skin cancer in women. There are several risk factors related to habits and heredity, and screening is essential to reduce the incidence of mortality. Thanks to screening and increased awareness among women, most breast cancers are diagnosed at an early stage, increasing the chances of cure and survival. Regular screening is essential. Mammography is currently the gold standard for breast cancer diagnosis. In mammography, we can encounter problems with the sensitivity of the instrument; in fact, in the case of a high density of glands, the ability to detect small masses is reduced. In fact, in some cases, the lesion may not be particularly evident, it may be hidden, and it is possible to incur false negatives as partial details that may escape the radiologist's eye. The problem is, therefore, substantial, and it makes sense to look for techniques that can increase the quality of diagnosis. In recent years, innovative techniques based on artificial intelligence have been used in this regard, which are able to see where the human eye cannot reach. In this paper, we can see the application of radiomics in mammography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA