Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2790: 227-256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649574

RESUMO

The eddy covariance technique, commonly applied using flux towers, enables the investigation of greenhouse gas (e.g., carbon dioxide, methane, nitrous oxide) and energy (latent and sensible heat) fluxes between the biosphere and the atmosphere. Through measuring carbon fluxes in particular, eddy covariance flux towers can give insight into how ecosystem scale photosynthesis (i.e., gross primary productivity) changes over time in response to climate and management. This chapter is designed to be a beginner's guide to understanding the eddy covariance method and how it can be applied in photosynthesis research. It introduces key concepts and assumptions that apply to the method, what materials are required to set up a flux tower, as well as practical advice for site installation, maintenance, data management, and postprocessing considerations. This chapter also includes examples of what can go wrong, with advice on how to correct these errors if they arise. This chapter has been crafted to help new users design, install, and manage the best towers to suit their research needs and includes additional resources throughout to further guide successful eddy covariance research activities.


Assuntos
Fotossíntese , Dióxido de Carbono/metabolismo , Ecossistema
2.
Sci Data ; 11(1): 332, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575621

RESUMO

Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years. In contrast to its prior version, Globe-LFMC 2.0 incorporates over 120,000 additional data entries, introduces more than 800 new sampling sites, and comprises LFMC values obtained from samples collected until the calendar year 2023. Each entry within the dataset provides essential information, including date, geographical coordinates, plant species, functional type, and, where available, topographical details. Moreover, the dataset encompasses insights into the sampling and weighing procedures, as well as information about land cover type and meteorological conditions at the time and location of each sampling event. Globe-LFMC 2.0 can facilitate advanced LFMC research, supporting studies on wildfire behaviour, physiological traits, ecological dynamics, and land surface modelling, whether remote sensing-based or otherwise. This dataset represents a valuable resource for researchers exploring the diverse LFMC aspects, contributing to the broader field of environmental and ecological research.

3.
Remote Sens Ecol Conserv ; 9(5): 587-598, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38505271

RESUMO

Climate change and increasing human activities are impacting ecosystems and their biodiversity. Quantitative measurements of essential biodiversity variables (EBV) and essential climate variables are used to monitor biodiversity and carbon dynamics and evaluate policy and management interventions. Ecosystem structure is at the core of EBVs and carbon stock estimation and can help to inform assessments of species and species diversity. Ecosystem structure is also used as an indirect indicator of habitat quality and expected species richness or species community composition. Spaceborne measurements can provide large-scale insight into monitoring the structural dynamics of ecosystems, but they generally lack consistent, robust, timely and detailed information regarding their full three-dimensional vegetation structure at local scales. Here we demonstrate the potential of high-frequency ground-based laser scanning to systematically monitor structural changes in vegetation. We present a proof-of-concept high-temporal ecosystem structure time series of 5 years in a temperate forest using terrestrial laser scanning (TLS). We also present data from automated high-temporal laser scanning that can allow upscaling of vegetation structure scanning, overcoming the limitations of a typically opportunistic TLS measurement approach. Automated monitoring will be a critical component to build a network of field monitoring sites that can provide the required calibration data for satellite missions to effectively monitor the structural dynamics of vegetation over large areas. Within this perspective, we reflect on how this network could be designed and discuss implementation pathways.

4.
Nat Commun ; 13(1): 7161, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418312

RESUMO

Levels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates. We find that climate change is projected to lead to widespread increases in risk, with at least 30 additional days above critical thresholds for fire activity in forest biomes on every continent by 2100 under rising emissions scenarios. Escalating forest fire risk threatens catastrophic carbon losses in the Amazon and major population health impacts from wildfire smoke in south Asia and east Africa.


Assuntos
Incêndios , Incêndios Florestais , Sequestro de Carbono , Água , Florestas
5.
Remote Sens Ecol Conserv ; 8(1): 57-71, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35873085

RESUMO

Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R 2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1-10 ha-1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.

6.
Glob Chang Biol ; 28(11): 3489-3514, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315565

RESUMO

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.


Assuntos
Dióxido de Carbono , Ecossistema , Austrália , Ciclo do Carbono , Mudança Climática
7.
Tree Physiol ; 42(3): 523-536, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34612494

RESUMO

Mistletoes are important co-contributors to tree mortality globally, particularly during droughts. In Australia, mistletoe distributions are expanding in temperate woodlands, while their hosts have experienced unprecedented heat and drought stress in recent years. We investigated whether the excessive water use of mistletoes increased the probability of xylem emboli in a mature woodland during the recent record drought that was compounded by multiple heatwaves. We continuously recorded transpiration ($T_{SLA}$) of infected and uninfected branches from two eucalypt species over two summers, monitored stem and leaf water potentials ($\Psi $) and used hydraulic vulnerability curves to estimate percent loss in conductivity (PLC) for each species. Variations in weather (vapor pressure deficit, photosynthetically active radiation, soil water content), host species and % mistletoe foliage explained 78% of hourly $T_{SLA}$. While mistletoe acted as an uncontrollable sink for water in the host even during typical summer days, daily $T_{SLA}$ increased up to 4-fold in infected branches on hot days, highlighting the previously overlooked importance of temperature stress in amplifying water loss in mistletoes. The increased water use of mistletoes resulted in significantly decreased host $\Psi _{\rm{leaf}}$ and $\Psi _{\rm{trunk}}$. It further translated to an estimated increase of up to 11% PLC for infected hosts, confirming greater hydraulic dysfunction of infected trees that place them at higher risk of hydraulic failure. However, uninfected branches of Eucalyptus fibrosa F.Muell. had much tighter controls on water loss than uninfected branches of Eucalyptus moluccana Roxb., which shifted the risk of hydraulic failure towards an increased risk of carbon starvation for E. fibrosa. The contrasting mechanistic responses to heat and drought stress between both co-occurring species demonstrates the complexity of host-parasite interactions and highlights the challenge in predicting species-specific responses to biotic agents in a warmer and drier climate.


Assuntos
Secas , Erva-de-Passarinho , Temperatura Alta , Água/fisiologia , Xilema
8.
Glob Chang Biol ; 27(19): 4727-4744, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34165839

RESUMO

Gross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary-line analysis to eddy covariance flux observations to (a) derive ecosystem GPP-Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP-Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down-welling short-wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP-Ta relationship. GPP-Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna-wet and dry seasons). The shape of GPP-Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2 : 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.


Assuntos
Ciclo do Carbono , Ecossistema , Austrália , Florestas , Estações do Ano , Temperatura
9.
Sci Total Environ ; 699: 133918, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522048

RESUMO

The critically endangered Cumberland Plain woodland within the greater Sydney metropolitan area hosts a dwindling refuge for melaleuca trees, an integral part of Australia's native vegetation. Despite their high carbon stocks, melaleucas have not explicitly been targeted for studies assessing their carbon sequestration potential, and especially little is known about their energy cycling or their response to increasing climate stress, precluding a holistic assessment of the resilience of Australia's forests to climate change. To improve our understanding of the role of melaleuca forest responses to climate stress, we combined forest inventory and airborne LiDAR data to identify species distribution and associated variations in forest structure, and deployed flux towers in a melaleuca-dominated (AU-Mel) and in a eucalypt-dominated (AU-Cum) stand to simultaneously monitor carbon and energy fluxes under typical growing conditions, as well as during periods with high atmospheric demand and low soil water content. We discovered that the species distribution at our study site affected the vertical vegetation structure, leading to differences in canopy coverage (75% at AU-Cum vs. 84% at AU-Mel) and plant area index (2.1 m2 m-2 at AU-Cum vs. 2.6 m2 m-2 at AU-Mel) that resulted in a heterogeneous forest landscape. Furthermore, we identified that both stands had comparable net daytime carbon exchange and sensible heat flux, whereas daytime latent heat flux (115.8 W m-2 at AU-Cum vs 119.4 W m-2 at AU-Mel, respectively) was higher at the melaleuca stand, contributing to a 0.3 °C decrease in air temperature and reduced vapor pressure deficit above the melaleuca canopy. However, increased canopy conductance and higher latent heat flux during moderate VPD or when soil moisture was low indicated a lack of water preservation at the melaleuca stand, highlighting the potential for increased vulnerability of melaleucas to projected hotter and drier future climates.


Assuntos
Sequestro de Carbono , Monitoramento Ambiental/métodos , Florestas , Tecnologia de Sensoriamento Remoto , Austrália
10.
Sci Total Environ ; 694: 133551, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756787

RESUMO

Topography exerts control on eco-hydrologic processes via alteration of energy inputs due to slope angle and orientation. Further, water availability varies with drainage position in response to topographic water redistribution and the catena effect on soil depth and thus soil water storage capacity. Our understanding of the spatio-temporal dynamics and drivers of transpiration patterns in complex terrain is still limited by lacking knowledge of how systematic interactions of energy and moisture patterns shape ecosystem state and water fluxes and adaptation of the vegetation to these patterns. To untangle the effects of slope orientation and hillslope position on forest structure and transpiration patterns, we measured forest structure, sap flux, soil moisture, throughfall and incoming shortwave radiation along two downslope transects in a forested head water catchment in south-east Australia. Our plot locations controlled for three systematically varying drainage position levels (topographic wetness index: 5.0, 6.5 and 8.0) and two levels of energy input (aridity index: 1.2 and 1.8). Vegetation patterns were generally stronger related to drainage position than slope orientation, whereas sap velocity variations were less pronounced. However, in combination with stand sapwood area, consistent spatio-temporal transpiration patterns emerged in relation to landscape position, where slope orientation was the primary and drainage position the secondary controlling factor. On short temporal scales, radiation and vapor pressure deficit were most important in regulating transpiration rates, whereas soil water limitation only occurred on shallow soils during summer. The importance of stand structural parameters increased on longer time scales, indicating optimization of vegetation in response to the long-term hydro-climatic conditions at a given landscape position. Thus, vegetation patterns can be conceptualized as a 'time-integrated' predictor variable that captures large fractions of other factors contributing to transpiration patterns.


Assuntos
Ecossistema , Monitoramento Ambiental , Transpiração Vegetal
11.
Sci Total Environ ; 690: 991-1004, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302562

RESUMO

Forests are an important global carbon sink but their responses to climate change are uncertain. Tree stems, as the predominant carbon pool, represent net productivity in temperate eucalypt forests but the drivers of growth in these evergreen forests remain poorly understood partly because the dominant tree species lack distinct growth rings. Disentangling eucalypt species' growth responses to climate from other factors, such as competition and disturbances like fire, remains challenging due to a lack of long-term growth data. We measured monthly stem-diameter changes (as basal area increment, BAI) of two co-occurring dominant eucalypts from different sub-genera (Eucalyptus obliqua and E. rubida) over nearly four years. Our study included seven sites in a natural temperate forest of south-eastern Australia, and we used linear mixed-effects models to examine the relative importance to monthly BAI of species, monthly climate variables (temperature and rainfall), inter-tree competition, and recent fire history (long-unburnt, prescribed fire, wildfire). Monthly BAI peaked in spring and autumn and was significantly different between species during spring and summer. BAI variation was most clearly associated with temperature, increasing in hyperbolic response curves up to maximum mean temperatures of ~ 15-17 °C and thereafter decreasing. Temperature optima for maximum monthly BAI were 1 to 2 °C warmer for E. rubida than E. obliqua. While less important than temperature, rainfall, particularly autumn rainfall, also helped explain patterns in monthly BAI, with inter-tree competition and recent fire history of comparatively minor importance. Our study provides the first comprehensive field-based evidence of different growth niches for eucalypts from different subgenera in natural temperate mixed forests. It highlights the importance of intra-annual climate to understanding productivity variation in temperate evergreen forests and provides insights into the mechanisms underpinning the successful co-existence of different tree species as well as their relative vulnerabilities to changing climates.


Assuntos
Mudança Climática , Eucalyptus/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Florestas , Austrália do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA