Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Structure ; 28(2): 169-184.e5, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31806353

RESUMO

Polycystin-2 (PC2) is a transient receptor potential (TRP) channel present in ciliary membranes of the kidney. PC2 shares a transmembrane fold with other TRP channels, in addition to an extracellular domain found in TRPP and TRPML channels. Using molecular dynamics (MD) simulations and cryoelectron microscopy we identify and characterize PIP2 and cholesterol interactions with PC2. PC2 is revealed to have a PIP binding site close to the equivalent vanilloid/lipid binding site in the TRPV1 channel. A 3.0-Å structure reveals a binding site for cholesterol on PC2. Cholesterol interactions with the channel at this site are characterized by MD simulations. The two classes of lipid binding sites are compared with sites observed in other TRPs and in Kv channels. These findings suggest PC2, in common with other ion channels, may be modulated by both PIPs and cholesterol, and position PC2 within an emerging model of the roles of lipids in the regulation and organization of ciliary membranes.


Assuntos
Colesterol/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Cátion TRPP/química , Canais de Cátion TRPP/metabolismo , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Células Sf9
2.
Nat Struct Mol Biol ; 24(2): 114-122, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27991905

RESUMO

Mutations in either polycystin-1 (PC1 or PKD1) or polycystin-2 (PC2, PKD2 or TRPP1) cause autosomal-dominant polycystic kidney disease (ADPKD) through unknown mechanisms. Here we present the structure of human PC2 in a closed conformation, solved by electron cryomicroscopy at 4.2-Å resolution. The structure reveals a novel polycystin-specific 'tetragonal opening for polycystins' (TOP) domain tightly bound to the top of a classic transient receptor potential (TRP) channel structure. The TOP domain is formed from two extensions to the voltage-sensor-like domain (VSLD); it covers the channel's endoplasmic reticulum lumen or extracellular surface and encloses an upper vestibule, above the pore filter, without blocking the ion-conduction pathway. The TOP-domain fold is conserved among the polycystins, including the homologous channel-like region of PC1, and is the site of a cluster of ADPKD-associated missense variants. Extensive contacts among the TOP-domain subunits, the pore and the VSLD provide ample scope for regulation through physical and chemical stimuli.


Assuntos
Canais de Cátion TRPP/química , Animais , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Rim Policístico Autossômico Dominante/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Células Sf9 , Spodoptera , Canais de Cátion TRPP/genética
3.
Science ; 347(6227): 1256-9, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25766236

RESUMO

TREK-2 (KCNK10/K2P10), a two-pore domain potassium (K2P) channel, is gated by multiple stimuli such as stretch, fatty acids, and pH and by several drugs. However, the mechanisms that control channel gating are unclear. Here we present crystal structures of the human TREK-2 channel (up to 3.4 angstrom resolution) in two conformations and in complex with norfluoxetine, the active metabolite of fluoxetine (Prozac) and a state-dependent blocker of TREK channels. Norfluoxetine binds within intramembrane fenestrations found in only one of these two conformations. Channel activation by arachidonic acid and mechanical stretch involves conversion between these states through movement of the pore-lining helices. These results provide an explanation for TREK channel mechanosensitivity, regulation by diverse stimuli, and possible off-target effects of the serotonin reuptake inhibitor Prozac.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Domínios Poros em Tandem/química , Sequência de Aminoácidos , Ácido Araquidônico/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Fluoxetina/análogos & derivados , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA