Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1144754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113613

RESUMO

The field of airway biology research relies primarily on in vitro and in vivo models of disease and injury. The use of ex vivo models to study airway injury and cell-based therapies remains largely unexplored although such models have the potential to overcome certain limitations of working with live animals and may more closely replicate in vivo processes than in vitro models can. Here, we characterized a ferret ex vivo tracheal injury and cell engraftment model. We describe a protocol for whole-mount staining of cleared tracheal explants, and showed that it provides a more comprehensive structural overview of the surface airway epithelium (SAE) and submucosal glands (SMGs) than 2D sections, revealing previously underappreciated structural anatomy of tracheal innervation and vascularization. Using an ex vivo model of tracheal injury, we evaluated the injury responses in the SAE and SMGs that turned out to be consistent with published in vivo work. We used this model to assess factors that influence engraftment of transgenic cells, providing a system for optimizing cell-based therapies. Finally, we developed a novel 3D-printed reusable culture chamber that enables live imaging of tracheal explants and differentiation of engrafted cells at an air-liquid interface. These approaches promise to be useful for modeling pulmonary diseases and testing therapies. Graphical abstract1,2. We describe here a method for differential mechanical injury of ferret tracheal explants that can be used to evaluate airway injury responses ex vivo. 3. Injured explants can be cultured at ALI (using the novel tissue-transwell device on the right) and submerged long-term to evaluate tissue-autonomous regeneration responses. 4. Tracheal explants can also be used for low throughput screens of compounds to improve cell engraftment efficiency or can be seeded with particular cells to model a disease phenotype. 5. Lastly, we demonstrate that ex vivo-cultured tracheal explants can be evaluated by various molecular assays and by immunofluorescent imaging that can be performed live using our custom-designed tissue-transwell.

2.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36512409

RESUMO

Keratin expression dynamically changes in airway basal cells (BCs) after acute and chronic injury, yet the functional consequences of these changes on BC behavior remain unknown. In bronchiolitis obliterans (BO) after lung transplantation, BC clonogenicity declines, which is associated with a switch from keratin15 (Krt15) to keratin14 (Krt14). We investigated these keratins' roles using Crispr-KO in vitro and in vivo and found that Krt14-KO and Krt15-KO produce contrasting phenotypes in terms of differentiation and clonogenicity. Primary mouse Krt14-KO BCs did not differentiate into club and ciliated cells but had enhanced clonogenicity. By contrast, Krt15-KO did not alter BC differentiation but impaired clonogenicity in vitro and reduced the number of label-retaining BCs in vivo after injury. Krt14, but not Krt15, bound the tumor suppressor stratifin (Sfn). Disruption of Krt14, but not of Krt15, reduced Sfn protein abundance and increased expression of the oncogene dNp63a during BC differentiation, whereas dNp63a levels were reduced in Krt15-KO BCs. Overall, the phenotype of Krt15-KO BCs contrasts with Krt14-KO phenotype and resembles the phenotype in BO with decreased clonogenicity, increased Krt14, and decreased dNp63a expression. This work demonstrates that Krt14 and Krt15 functionally regulate BC behavior, which is relevant in chronic disease states like BO.


Assuntos
Bronquiolite Obliterante , Transplante de Pulmão , Animais , Camundongos , Diferenciação Celular , Queratinas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA