Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(2): 1167-1181, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209282

RESUMO

Complete absorption of electromagnetic waves is paramount in today's applications, ranging from photovoltaics to cross-talk prevention into sensitive devices. In this context, we use a genetic algorithm (GA) strategy to optimize absorption properties of periodic arrays of truncated square-based pyramids made of alternating stacks of metal/dielectric layers. We target ultra-broadband quasi-perfect absorption of normally incident electromagnetic radiations in the visible and near-infrared ranges (wavelength comprised between 420 and 1600 nm). We compare the results one can obtain by considering one, two or three stacks of either Ni, Ti, Al, Cr, Ag, Cu, Au or W for the metal, and poly(methyl methacrylate) (PMMA) for the dielectric. More than 1017 configurations of geometrical parameters are explored and reduced to a few optimal ones. This extensive study shows that Ni/PMMA, Ti/PMMA, Cr/PMMA and W/PMMA provide high-quality solutions with an integrated absorptance higher than 99% over the considered wavelength range, when considering realistic implementation of these ultra-broadband perfect electromagnetic absorbers. Robustness of optimal solutions with respect to geometrical parameters is investigated and local absorption maps are provided. Moreover, we confirm that these optimal solutions maintain quasi-perfect broadband absorption properties over a broad angular range when changing the inclination of the incident radiation. The study also reveals that noble metals (Au, Ag, Cu) do not provide the highest performance for the present application.

2.
J Phys Chem Lett ; 11(21): 9364-9370, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33095025

RESUMO

Crystal engineering is a practical approach for tailoring material properties. This approach has been widely studied for modulating optical and electrical properties of semiconductors. However, the properties of organic molecular crystals are difficult to control following a similar engineering route. In this Letter, we demonstrate that engineered crystals of Alq3 and Ir(ppy)3 complexes, which are commonly used in organic light-emitting technologies, possess intriguing functional properties. Specifically, these structures not only process efficient low-energy induced triplet excitation directly from the ground state of Alq3 but also can show strong emission at the Alq3 triplet energy level at room temperatures. We associate these phenomena with local deformations of the host matrix around the guest molecules, which in turn lead to a stronger host-guest triplet-triplet coupling and spin-orbital mixing.

3.
J Phys Chem B ; 121(19): 5078-5085, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28430445

RESUMO

Controlling the surface roughness of thin films with nanoscale precision is of significant interest for the rational design of surface coatings. Although wrinkling and buckling of Langmuir monolayers under compression has been demonstrated for several years, there is currently no method to precisely control this behavior during compression and thereby modify the surface roughness of deposited films. Here, we combine conventional Langmuir phase analysis with a novel dynamic viscoelasticity measurement to simply and accurately observe the jamming transition of monolayers of silica spheres, graphene oxide, and surfactant. By overcompressing beyond this point, the surface roughness of the deposited monolayer can be precisely controlled. This technique could be used to tune the surface properties of a variety of materials from lipids to nanoparticles.


Assuntos
Grafite/química , Simulação de Dinâmica Molecular , Óxidos/química , Tensoativos/química , Microscopia Eletrônica de Varredura , Dióxido de Silício/química , Propriedades de Superfície , Viscosidade
4.
Opt Express ; 24(9): 9932-54, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137604

RESUMO

Generation of entangled photons in nonlinear media constitutes a basic building block of modern photonic quantum technology. Current optical materials are severely limited in their ability to produce three or more entangled photons in a single event due to weak nonlinearities and challenges achieving phase-matching. We use integrated nanophotonics to enhance nonlinear interactions and develop protocols to design multimode waveguides that enable sustained phase-matching for third-order spontaneous parametric down-conversion (TOSPDC). We predict a generation efficiency of 0.13 triplets/s/mW of pump power in TiO2-based integrated waveguides, an order of magnitude higher than previous theoretical and experimental demonstrations. We experimentally verify our device design methods in TiO2 waveguides using third-harmonic generation (THG), the reverse process of TOSPDC that is subject to the same phase-matching constraints. We finally discuss the effect of finite detector bandwidth and photon losses on the energy-time coherence properties of the expected TOSPDC source.

5.
Opt Express ; 23(6): 7832-41, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837122

RESUMO

Third-harmonic generation (THG) has applications ranging from wavelength conversion to pulse characterization, and has important implications for quantum sources of entangled photons. However, on-chip THG devices are nearly unexplored because bulk techniques are difficult to adapt to integrated photonic circuits. Using sub-micrometer-wide polycrystalline anatase TiO2 waveguides, we demonstrate third-harmonic generation on a CMOS-compatible platform. We correlate higher conversion efficiencies with phase-matching between the fundamental pump mode and higher-order signal modes. Using scattered light, we estimate conversion efficiencies as high as 2.5% using femtosecond pulses, and thus demonstrate that multimode TiO2 waveguides are promising for wideband wavelength conversion and new applications ranging from sensors to triplet-photon sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA