RESUMO
NiMo alloys are considered highly promising non-noble Hydrogen Evolution Reaction (HER) catalysts. Besides the synergistic effect of alloying elements, recent attention is drawn to the Mo leaching from the catalyst. This work investigates the role of Mo in NiMo alloys during HER, aiming to understand the interplay between compositional, structural, and electronic factors on the activity, and their effects on the electrode material and catalyst properties. For this purpose, sputter-deposited low roughness NixMo100-x thin films are produced. The investigation of catalyst performance depending on their chemical composition shows a volcano-shaped plot, peaking for the Ni65Mo35 alloy with the highest intrinsic activity in alkaline HER. A comprehensive electrode surface analysis combining transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy identifies the leaching of Mo on a structural level and indicates the formation of a Ni(OH)2-rich surface area. The ultimate surface characteristics of the NiMo catalysts depend on the initial composition and the electrochemical procedure. Based on the findings, it conclude that the observed catalytic properties of NiMo alloys in HER are determined by a complex interplay of increasing roughness, available surface species and their synergies. The leaching of Mo has a proven structural effect and is considered one of several factors contributing to the enhanced catalyst activity.
RESUMO
Additive manufacturing (AM) has revolutionised the manufacturing industry, offering versatile capabilities for creating complex geometries directly from a digital design. Among the various 3D printing methods for polymers, vat photopolymerisation combines photochemistry and 3D printing. Despite the fact that single-epoxy 3D printing has been explored, the fabrication of multi-material bioderived epoxy thermosets remains unexplored. This study introduces the feasibility and potential of multi-material 3D printing by means of a dual-vat Digital Light Processing (DLP) technology, focusing on bioderived epoxy resins such as ELO (epoxidized linseed oil) and DGEVA (vanillin alcohol diglycidyl ether). By integrating different materials with different mechanical properties into one sample, this approach enhances sustainability and offers versatility for different applications. Through experimental characterisation, including mechanical and thermal analysis, the study demonstrates the ability to produce structures composed of different materials with tailored mechanical properties and shapes that change on demand. The findings underscore the promising technology of dual-vat DLP technology applied to sustainable bioderived epoxy monomers, allowing sustainable material production and complex structure fabrication.
RESUMO
Chemical amplification is a well-established concept in photoresist technology, wherein one photochemical event leads to a cascade of follow-up reactions that facilitate a controlled change in the solubility of a polymer. Herein, we transfer this concept to dynamic polymer networks to liberate both catalyst and functional groups required for bond exchange reactions under UV irradiation. For this, we exploit a photochemically generated acid to catalyse a deprotection reaction of an acid-labile tert-butoxycarbonyl group, which is employed to mask the hydroxy groups of a vinyl monomer. At the same time, the released acid serves as a catalyst for thermo-activated transesterifications between the deprotected hydroxy and ester moieties. Introduced in an orthogonally cured (450â nm) thiol-click photopolymer, this approach allows for a spatio-temporally controlled activation of bond exchange reactions, which is crucial in light of the creep resistance versus reflow ability trade-off of dynamic polymer networks.
RESUMO
Cu3BiS3 thin films are fabricated via spin coating of precursor solutions containing copper and bismuth xanthates onto planar glass substrates or mesoporous metal oxide scaffolds followed by annealing at 300 °C to convert the metal xanthates into copper bismuth sulfide. Detailed insights into the film formation are gained from time-resolved simultaneous small and wide angle X-ray scattering measurements. The Cu3BiS3 films show a high absorption coefficient and a band gap of 1.55 eV, which makes them attractive for application in photovoltaic devices. Transient absorption spectroscopic measurements reveal that charge generation yields in mesoporous TiO2/Cu3BiS3 heterojunctions can be significantly improved by the introduction of an In2S3 interlayer, and long-lived charge carriers (t50% of 10 µs) are found.
RESUMO
Highly effective yet affordable non-noble metal catalysts are a key component for advances in hydrogen generation via electrolysis. The synthesis of catalytic heterostructures containing established Ni in combination with surface NiO, Ni(OH)2, and NiOOH domains gives rise to a synergistic effect between the surface components and is highly beneficial for water splitting and the hydrogen evolution reaction (HER). Herein, the intrinsic catalytic activity of pure Ni and the effect of partial electrochemical oxidation of ultra-smooth magnetron sputter-deposited Ni surfaces are analyzed by combining electrochemical measurements with transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The experimental investigations are supplemented by Density Functional Theory and Kinetic Monte Carlo simulations. Kinetic parameters for the HER are evaluated while surface roughening is carefully monitored during different Ni film treatment and operation stages. Surface oxidation results in the dominant formation of Ni(OH)2, practically negligible surface roughening, and 3-5 times increased HER exchange current densities. Higher levels of surface roughening are observed during prolonged cycling to deep negative potentials, while surface oxidation slows down the HER activity losses compared to as-deposited films. Thus, surface oxidation increases the intrinsic HER activity of nickel and is also a viable strategy to improve catalyst durability.
RESUMO
Photochemical additive manufacturing technologies can produce complex geometries in short production times and thus have considerable potential as a tool to fabricate medical devices such as individualized patient-specific implants, prosthetics and tissue engineering scaffolds. However, most photopolymer resins degrade only slowly under the mild conditions required for many biomedical applications. Herein we report a novel platform consisting of amino acid-based polyphosphorodiamidate (APdA) monomers with hydrolytically cleavable bonds. The substituent on the α-amino acid can be used as a handle for facile control of hydrolysis rates of the monomers into their endogenous components, namely phosphate and the corresponding amino acid. Furthermore, monomer hydrolysis is considerably accelerated at lower pH values. The monomers underwent thiol-yne photopolymerization and could be 3D structured via multiphoton lithography. Copolymerization with commonly used hydrophobic thiols demonstrates not only their ability to regulate the ambient degradation rate of thiol-yne polyester photopolymer resins, but also desirable surface erosion behavior. Such degradation profiles, in the appropriate time frames, in suitably mild conditions, combined with their low cytotoxicity and 3D printability, render these novel photomonomers of significant interest for a wide range of biomaterial applications.
Assuntos
Aminoácidos , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Materiais Biocompatíveis , Engenharia Tecidual , Poliésteres , Materiais Dentários , Compostos de Sulfidrila/químicaRESUMO
Thiyl radicals were generated from aromatic S-thioformates by photolysis. The corresponding photo-initiated decarbonylation allows initiating polymerization reactions in both acrylate- and thiol-acrylate-based resin systems. Compared to aromatic thiols, the introduction of the photolabile formyl group prevents undesired reactions with acrylate monomers allowing photoinitiators (PIs) with constant reactivity over storage. To demonstrate the potential of S-thioformates as PIs, the bifunctional molecule S,S'-(thiobis(4,1-phenylene))dimethanethioate (2b) was synthesized, providing reactivity under visible light excitation. Consequently, acrylate-based formulations could successfully be processed by digital light processing (DLP)-based stereolithography at 405 nm in high resolution.
RESUMO
Light guiding is used to direct light from an emitting source to a different location. It is frequently realized through a clad-core structure with a difference in the refractive index of the materials. This paper explores the possibility of combining a fluoropolymer (THV) film of low refractive index, serving as a cladding layer, with a polycarbonate (PC) core, via injection molding. Pristine THV lacks adherence to the PC. However, when treated with O2 plasma prior to overmolding, bonding can be established that was quantified in peel tests. The effect of this surface treatment was further investigated by adjusting the plasma treatment duration and time to overmolding. Furthermore, parameter studies comprising the four molding parameters, namely packing pressure, injection speed, melt temperature, and mold temperature, were performed. Numerical injection molding simulations assessed the prevailing temperatures at the PC-THV boundary. Consequently, the temperature-time integral could be calculated and linked with the measured peel strengths by fitting a proportionality constant. While the plasma treatment duration showed minor influence, the activation diminished with time, halving the measured peel loads within 24 h. The adhesion was experimentally found to increase with a lower packing pressure, faster injection speed, and higher melt and mold temperature. Those same molding relations influencing the peel loads were also found with the temperature-time integral when scaled by the proportionality constant in the simulations (R2=85%). Apparently, adhesion is added by molding settings which promote higher interface temperatures that prevail for longer. Hereby, the faster injection speed increases the melt temperature through shear heating. A higher packing pressure, in contrast, presumably increases the heat transfer at the PC-THV interface, accelerating the cooling. The measured peel loads were 0.3-1.6 N/mm for plasma-treated samples and nearly zero for pristine THV.
RESUMO
Vitrimers brought new properties in thermosets by allowing their reshaping, self-healing, reprocessing, and network rearrangement without changing structural integrity. In this study, epoxidized castor oil (ECO) was successfully used for the straightforward synthesis of a bio-based solvent-free vitrimer. The synthesis was based on a UV-curing process, which proceeded at low temperatures in the absence of any solvents, and within a short time. Real time Fourier-transformed infrared spectroscopy and photo-DSC were exploited to monitor the cationic photocurable process. The UV-cured polymer networks were able to efficiently undergo thermo-activated bond exchange reactions due to the presence of dibutyl phosphate as a transesterification catalyst. Mechanical properties, thermal resistance, glass transition temperature, and stress relaxation were investigated as a function of the amount of transesterification catalyst. Mechanical properties were determined by both DMTA and tensile tests. Glass transition temperature (Tg) was evaluated by DMTA. Thermal stability was assessed by thermogravimetric analysis, whilst vitrimeric properties were studied by stress relaxation experiments. Overall, the ECO-based vitrimer showed high thermal resistance (up to 200 °C) and good mechanical properties (elastic modulus of about 10 MPa) and can therefore be considered as a promising starting point for obtaining more sustainable vitrimers.
RESUMO
While latent catalysts are a well-established strategy for initiating and controlling the rate of polymerization reactions, their use in dynamic polymer networks is still in its infancy. The ideal latent catalyst should be thermally stable and release a highly active species in response to an external trigger. Here, we have synthesized a temperature resistant (>200 °C) organic phosphate with a photolabile o-nitrobenzyl protecting group that can be cleaved by UV light. Introduced in a visible light curable thiol-click photopolymer, the sequence-dependent λ-orthogonality of the curing and cleavage enables an efficient network formation at 451â nm, without premature release of the catalyst. Once cured, irradiation at 372â nm spatiotemporally activates the phosphate, which catalyzes transesterifications at elevated temperature. The formed catalyst has no effect on the thermal stability of the polymeric network and allows the activation of bond exchange reactions in selected domains of printed 3D objects.
RESUMO
Correction for 'Synthesis and characterization of diacylgermanes: persistent derivatives with superior photoreactivity' by Sabrina D. Püschmann et al., Dalton Trans., 2021, 50, 11965-11974, DOI: 10.1039/D1DT02091A.
RESUMO
Acylgermanes are known as highly efficient photoinitiators. In this contribution, we present the synthesis of new diacylgermanes 4a-evia a multiple silyl abstraction methodology. The method outperforms the state-of-the-art approach (Corey-Seebach reaction) towards diacylgermanes in terms of group tolerance and toxicity of reagents. Moreover, these compounds are decorated with bulky mesityl groups in order to improve their storage stability. The isolated diacylgermanes were characterized by multinuclear NMR-, UV-Vis spectroscopy and X-ray crystallography, as well as photolysis experiments (photobleaching) and photo-DSC measurements (photopolymerization behavior). Upon irradiation with an LED emitting at 385 nm, all compounds except for 4a and 4c bleach efficiently with quantum yields above 0.6. Due to their broad absorption bands, the compounds can be also bleached with blue light (470 nm), where especially 4e bleaches more efficiently than Ivocerin®.
RESUMO
Improving the interface stability for nanosized thin films on brittle substrates is crucial for technological applications such as microelectronics because the so-called brittle-ductile interfaces limit their overall reliability. By tuning the thin film properties, interface adhesion can be improved because of extrinsic toughening mechanisms during delamination. In this work, the influence of the film microstructure on interface adhesion was studied on a model brittle-ductile interface consisting of nanosized Cu films on brittle glass substrates. Therefore, 110 nm thin Cu films were deposited on glass substrates using magnetron sputtering. While film thickness, residual stresses, and texture of the Cu films were maintained comparable in the sputtering processes, the film microstructure was varied during deposition and via isothermal annealing, resulting in four different Cu films with bimodal grain size distributions. The interface adhesion of each Cu film was then determined using stressed Mo overlayers, which triggered Cu film delaminations in the shape of straight, spontaneous buckles. The mixed-mode adhesion energy for each film ranged from 2.35 J/m2 for the films with larger grains to 4.90 J/m2 for the films with the highest amount of nanosized grains. This surprising result could be clarified using an additional study of the buckles using focused ion beam cutting and quantification via confocal laser scanning microscopy to decouple and quantify the amount of elastic and plastic deformation stored in the buckled thin film. It could be shown that the films with smaller grains exhibit the possibility of absorbing a higher amount of energy during delamination, which explains their higher adhesion energy.
RESUMO
This study describes the formation of cellulose based polyelectrolyte charge complexes on the surface of biodegradable polycaprolactone (PCL) thin films. Anionic sulphated cellulose (CS) and protonated cationic amino cellulose (AC) were used to form these complexes with a layer-by-layer coating technique. Both polyelectrolytes were analyzed by charge titration methods to elucidate their pH-value dependent protonation behavior. A quartz crystal microbalance with dissipation (QCM-D) in combination with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to follow the growth, stability and water content of up to three AC/CS bi-layers in aqueous environment. This was combined with coagulation studies on one, two and three bilayers of AC/CS, measuring the thrombin formation rate and the total coagulation time of citrated blood plasma with QCM-D. Stable mixed charged bilayers could be prepared on PCL and significantly higher masses of AC than of CS were present in these complexes. Strong hydration due to the presence of ammonium and sulphate substituents on the backbone of cellulose led to a significant BSA repellent character of three bilayers of AC/CS coatings. The total plasma coagulation time was increased in comparison to neat PCL, indicating an anticoagulative nature of the coatings. Surprisingly, a coating solely composed of an AC layer significantly prolonged the total coagulation time on the surfaces although it did not prevent fibrinogen deposition. It is suggested that these cellulose derivative-based coatings can therefore be used to prevent unwanted BSA deposition and fibrin clot formation on PCL to foster its biomedical application.
Assuntos
Anticoagulantes/química , Materiais Biocompatíveis/química , Coagulação Sanguínea/efeitos dos fármacos , Celulose/análogos & derivados , Poliésteres/química , Aminação , Anticoagulantes/farmacologia , Materiais Biocompatíveis/farmacologia , Celulose/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Membranas Artificiais , Polieletrólitos/química , Ligação Proteica/efeitos dos fármacos , Prótons , Soroalbumina Bovina/química , Eletricidade Estática , Ésteres do Ácido Sulfúrico/química , Trombina/antagonistas & inibidores , Trombina/metabolismo , Água/químicaRESUMO
The interface between the reinforcement and surrounding matrix in a fibrous composite is decisive and critical for maintaining component performance, durability, and mechanical structure properties for load coupling assessment, especially for highly flexible composite materials. The clear trend towards tailored solutions reveals that an in-depth knowledge on surface treating methods to enhance the fiber-matrix interfacial interaction and adhesion properties for an optimized load transfer needs to be ensured. This research aims to quantify the effect of several surface treatments for glass fibers applied in endless fiber-reinforced elastomers with pronounced high deformations. Due to this, the glass fiber surface is directly modified with selected sizings, using a wet chemical treatment, and characterized according to chemical and mechanical aspects. For this purpose, the interfacial adhesion performance between fibers and the surrounding matrix material is investigated by a modified fiber pull-out device. The results clearly show that an optimized surface treatment improves the interface strength and chemical bonding significantly. The fiber pull-out test confirms that an optimized fiber-matrix interface can be enhanced up to 85% compared to standard surface modifications, which distinctly provides the basis of enhanced performances on the component level. These findings were validated by chemical analysis methods and corresponding optical damage analysis.
RESUMO
Natural and synthetic coumarin derivatives have gained increased attention in the design of functional polymers and polymer networks due to their unique optical, biological, and photochemical properties. This review provides a comprehensive overview over recent developments in macromolecular architecture and mainly covers examples from the literature published from 2004 to 2020. Along with a discussion on coumarin and its photochemical properties, we focus on polymers containing coumarin as a nonreactive moiety as well as polymer systems exploiting the dimerization and/or reversible nature of the [2πs + 2πs] cycloaddition reaction. Coumarin moieties undergo a reversible [2πs + 2πs] cycloaddition reaction upon irradiation with specific wavelengths in the UV region, which is applied to impart intrinsic healability, shape-memory, and reversible properties into polymers. In addition, coumarin chromophores are able to dimerize under the exposure to direct sunlight, which is a promising route for the synthesis and cross-linking of polymer systems under "green" and environment-friendly conditions. Along with the chemistry and design of coumarin functional polymers, we highlight various future application fields of coumarin containing polymers involving tissue engineering, drug delivery systems, soft robotics, or 4D printing applications.
RESUMO
The formation of a stable triacylgermenolate 2 as a decisive intermediate was achieved by using three pathways. The first two methods involve the reaction of KOtBu or alternatively potassium with tetraacylgermane 1 yielding 2 via one electron transfer. The mechanism involves the formation of radical anions (shown by EPR). This reaction is highly efficient and selective. The third method is a classical salt metathesis reaction toward 2 in nearly quantitative yield. The formation of 2 was confirmed by NMR spectroscopy, UV-vis measurements, and X-ray crystallography. Germenolate 2 serves as a starting point for a wide variety of organo-germanium compounds. We demonstrate the potential of this intermediate by introducing new types of Ge-based photoinitiators 4b-4f. The UV-vis absorption spectra of 4b-4f show considerably increased band intensities due to the presence of eight or more chromophores. Moreover, compounds 4d-4f show absorption tailing up to 525 nm. The performance of these photoinitiators is demonstrated by spectroscopy (time-resolved EPR, laser flash photolysis (LFP), photobleaching (UV-vis)) and photopolymerization experiments (photo-DSC measurements).
RESUMO
To implement large-area solution-processed graphene films in low-cost transparent conductor applications, it is necessary to have the control over the work function (WF) of the film. In this study we demonstrate a straightforward single-step chemical approach for modulating the work function of graphene films. In our approach, chemical doping of the film is introduced at the moment of its formation. The films are self-assembled from liquid-phase exfoliated few-layer graphene sheet dispersions by Langmuir-Blodgett technique at the water-air interfaces. To achieve a single-step chemical doping, metal standard solutions are introduced instead of water. Li standard solutions (LiCl, LiNO3, Li2CO3) were used as n-dopant, and gold standard solution, H(AuCl4), as p-dopant. Li based salts decrease the work function, while Au based salts increase the work function of the entire film. The maximal doping in both directions yields a significant range of around 0.7 eV for the work function modulation. In all cases when Li-based salts are introduced, electrical properties of the film deteriorate. Further, lithium nitrate (LiNO3) was selected as the best choice for n-type doping since it provides the largest work function modulation (by 400 meV), and the least influence on the electrical properties of the film.
RESUMO
The fabrication of two- and three-dimensional scaffolds mimicking the extracellular matrix and providing cell stimulation is of high importance in biology and material science. We show two new, biocompatible polymers, which can be 3D structured via multiphoton lithography, and determine their mechanical properties. Atomic force microscopy analysis of structures with sub-micron feature sizes reveals Young's modulus values in the 100 MPa range. Assessment of biocompatibility of the new resins was done by cultivating human umbilical vein endothelial cells on two-dimensionally structured substrates for four days. The cell density and presence of apoptotic cells has been quantified.
RESUMO
The present work provides a comparative study on the photopatterning of epoxy-based thermosets as a function of network structure and network mobility. Local switching of solubility properties by light of a defined wavelength is achieved by exploiting versatile o-nitrobenzyl ester (o-NBE) chemistry. o-NBE derivatives with terminal epoxy groups are synthetized and thermally cured with different types of cycloaliphatic anhydrides via nucleophilic ring opening reaction. By varying the structure of the anhydride, glass transition temperature (Tg) and surface hardness are adjusted over a broad range. Once the network has been formed, the photolysis of the o-NBE groups enables a well-defined degradation of the 3D network. Fourier transform infrared (FT-IR) spectroscopy studies demonstrate that cleavage rate and cleavage yield increase with rising mobility of the network, which is either facilitated by inherent network properties (Tg below room temperature) or a simultaneous heating of the thermosets above their Tg. The formation of soluble species is evidenced by sol-gel analysis, revealing that low-Tg networks are prone to secondary photoreactions at higher exposure doses, which lead to a re-crosslinking of the cleaved polymer chains. The change in solubility properties is exploited to inscribe positive tone micropatterns within the thermosets by photolithographic techniques. Contrast curves show that the resist performance of rigid networks is superior to flexible ones, with a contrast of 1.17 and a resolution of 8 µm.