Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 243(4): 1301-1311, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453691

RESUMO

Plant leaf temperatures can differ from ambient air temperatures. A temperature gradient in a gas mixture gives rise to a phenomenon known as thermodiffusion, which operates in addition to ordinary diffusion. Whilst transpiration is generally understood to be driven solely by the ordinary diffusion of water vapour along a concentration gradient, we consider the implications of thermodiffusion for transpiration. We develop a new modelling framework that introduces the effects of thermodiffusion on the transpiration rate, E. By applying this framework, we quantify the proportion of E attributable to thermodiffusion for a set of physiological and environmental conditions, varied over a wide range. Thermodiffusion is found to be most significant (in some cases > 30% of E) when a leaf-to-air temperature difference coincides with a relatively small water vapour concentration difference across the boundary layer; a boundary layer conductance that is large as compared to the stomatal conductance; or a relatively low transpiration rate. Thermodiffusion also alters the conditions required for the onset of reverse transpiration, and the rate at which this water vapour uptake occurs.


Assuntos
Modelos Biológicos , Folhas de Planta , Transpiração Vegetal , Temperatura , Água , Transpiração Vegetal/fisiologia , Difusão , Água/fisiologia , Água/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia
2.
Plant Cell Environ ; 44(9): 2844-2857, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938016

RESUMO

An expression was earlier derived for the non-steady state isotopic composition of a leaf when the composition of the water entering the leaf was not necessarily the same as that of the water being transpired (Farquhar and Cernusak 2005). This was relevant to natural conditions because the associated time constant is typically sufficiently long to ensure that the leaf water composition and fluxes of the isotopologues are rarely steady. With the advent of laser-based measurements of isotopologues, leaves have been enclosed in cuvettes and time courses of fluxes recorded. The enclosure modifies the time constant by effectively increasing the resistance to the one-way gross flux out of the stomata because transpiration increases the vapour concentration within the chamber. The resistance is increased from stomatal and boundary layer in series, to stomata, boundary layer and chamber resistance, where the latter is given by the ratio of leaf area to the flow rate out of the chamber. An apparent change in concept from one-way to net flux, introduced by Song, Simonin, Loucos and Barbour (2015) is resolved, and shown to be unnecessary, but the value of their data is reinforced.


Assuntos
Isótopos de Oxigênio/metabolismo , Folhas de Planta/metabolismo , Transpiração Vegetal , Água/metabolismo , Hidrogênio/metabolismo , Modelos Biológicos , Estômatos de Plantas/metabolismo
3.
Plant Cell Environ ; 44(2): 432-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33175397

RESUMO

H2 18 O enrichment develops when leaves transpire, but an accurate generalized mechanistic model has proven elusive. We hypothesized that leaf hydraulic architecture may affect the degree to which gradients in H2 18 O develop within leaves, influencing bulk leaf stable oxygen isotope enrichment (ΔL ) and the degree to which the Péclet effect is relevant in leaves. Leaf hydraulic design predicted the relevance of a Péclet effect to ΔL in 19 of the 21 species tested. Leaves with well-developed hydraulic connections between the vascular tissue and the epidermal cells through bundle sheath extensions and clear distinctions between palisade and spongy mesophyll layers (while the mesophyll is hydraulically disconnected) may have velocities of the transpiration stream such that gradients in H2 18 O develop and are expressed in the mesophyll. In contrast, in leaves where the vascular tissue is hydraulically disconnected from the epidermal layers, or where all mesophyll cells are well connected to the transpiration stream, velocities within the liquid transport pathways may be low enough that gradients in H2 18 O are very small. Prior knowledge of leaf hydraulic design allows informed selection of the appropriate ΔL modelling framework.


Assuntos
Oxigênio/metabolismo , Fenômenos Fisiológicos Vegetais , Transpiração Vegetal/fisiologia , Plantas/anatomia & histologia , Transporte Biológico , Células do Mesofilo/metabolismo , Modelos Biológicos , Isótopos de Oxigênio/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Plântula/anatomia & histologia , Plântula/fisiologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA