Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(31): 37454-37466, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506322

RESUMO

Lithium-ion capacitors (LIC) combine the energy storage mechanisms of lithium-ion batteries and electric double layer capacitors (EDLC) and are supposed to promise the best of both worlds: high energy and power density combined with a long life. However, the lack of lithium cation sources in the carbon cathode demands the cumbersome step of prelithiation of the graphite anode, mainly by using sacrificial lithium metal, hindering the mass adoption of LICs. Here, in a conceptually new class of devices termed lithium metal capacitors (LMC), we replace the graphite anode with a lithium metal anode stabilized by a complex yet stable solid-electrolyte interface (SEI). Via a specialized formation process, the well-explored synergetic reaction between the LiNO3 additive and controlled amounts of polysulfides in an ether-based electrolyte stabilizes the SEI on the lithium metal electrode. Optimized devices at the coin cell level deliver 55 mAh g-1 at a fast 30C discharge rate and maintain 95% capacity after 8000 cycles. At the pouch-cell level, energy densities of 13 Wh kg-1 are readily achieved, indicating the transferability of the technology to practical scales. The LMC, a new class of capacitive device, eliminates the prelithiation process of the conventional LIC, allowing practical production at scale and offering exciting avenues for exploring versatile cathode chemistries on account of using a lithium metal anode.

2.
Mater Horiz ; 8(1): 259-266, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821304

RESUMO

A leaf is a free-standing photocatalytic system that can effectively harvest solar energy and convert CO2 and H2O into carbohydrates in a continuous manner without the need for regeneration or tedious product extraction steps. Despite encouraging advances achieved in designing artificial photocatalysts, most of them function in bulk solution or on rigid surfaces. Here, we report on a 2D flexible photocatalytic system based on close packed Janus plasmene nanosheets. One side of the Janus nanosheets is hydrophilic with catalytically active palladium, while the opposite side is hydrophobic with plasmonic nanocrystals. Such a unique design ensures a stable nanostructure on a flexible polymer substrate, preventing dissolution/degradation of plasmonic photocatalysts during chemical conversion in aqueous solutions. Using catalytic reduction of 4-nitrophenol as a model reaction, we demonstrated efficient plasmon-enhanced photochemical conversion on our flexible Janus plasmene. The photocatalytic efficiency could be tuned by adjusting the palladium thickness or types of constituent building blocks or their orientations, indicating the potential for tailor-made catalyst design for desired reactions. Furthermore, the flexible Janus plasmene nanosheets were designed into a small 3D printed artificial tree, which could continuously convert 30 mL of chemicals in 45 minutes.


Assuntos
Nanopartículas , Nanoestruturas , Energia Solar , Catálise , Interações Hidrofóbicas e Hidrofílicas
3.
ChemSusChem ; 13(2): 328-333, 2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31777179

RESUMO

Photoinduced charge carrier behavior is critical in determining photoelectrocatalytic activity. In this study, a unique layer-doped metal-free polymeric carbon nitride (C3 N4 ) photoanode is fabricated by using one-pot thermal vapor deposition. With this method, a photoanode consisting of a phosphorus-doped top layer, boron-doped middle layer, and pristine C3 N4 bottom layer, was formed as a result of the difference in thermal polymerization kinetics associated with the boron-containing H3 BO3 -melamine complex and the phosphorus-containing H3 PO4 -dicyandiamide complex. This layer-doping fabrication strategy effectively contributes to the formation of dual junctions that optimizing charge carrier behavior. The ternary-layer C3 N4 photoanode exhibits significantly enhanced photoelectrochemical water oxidation activity compared to pristine C3 N4 , with a record photocurrent density of 150±10 µA cm-2 at 1.23 V vs. RHE. This layer-doping strategy provides an effective means for design and fabrication of photoelectrodes for solar water oxidation.

4.
J Biol Chem ; 291(12): 6134-45, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26697885

RESUMO

Pyroglutamate-modified amyloid-ß (pE-Aß) is a highly neurotoxic amyloid-ß (Aß) isoform and is enriched in the brains of individuals with Alzheimer disease compared with healthy aged controls. Pyroglutamate formation increases the rate of Aß oligomerization and alters the interactions of Aß with Cu(2+) and lipids; however, a link between these properties and the toxicity of pE-Aß peptides has not been established. We report here that Aß3pE-42 has an enhanced capacity to cause lipid peroxidation in primary cortical mouse neurons compared with the full-length isoform (Aß(1-42)). In contrast, Aß(1-42) caused a significant elevation in cytosolic reactive oxygen species, whereas Aß3pE-42 did not. We also report that Aß3pE-42 preferentially associates with neuronal membranes and triggers Ca(2+) influx that can be partially blocked by the N-methyl-d-aspartate receptor antagonist MK-801. Aß3pE-42 further caused a loss of plasma membrane integrity and remained bound to neurons at significantly higher levels than Aß(1-42) over extended incubations. Pyroglutamate formation was additionally found to increase the relative efficiency of Aß-dityrosine oligomer formation mediated by copper-redox cycling.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Sinalização do Cálcio , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Ascórbico/química , Permeabilidade da Membrana Celular , Células Cultivadas , Cobre/química , Humanos , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos , Ácido Pirrolidonocarboxílico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
5.
J Am Chem Soc ; 132(41): 14409-11, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20866057

RESUMO

Cyclopropyl malonoyl peroxide (1), which can be prepared in a single step from the commercially available diacid, is an effective reagent for the dihydroxylation of alkenes. Reaction of 1 with an alkene in the presence of 1 equiv of water at 40 °C followed by alkaline hydrolysis leads to the corresponding diol (40-93%). With 1,2-disubstituted alkenes, the reaction proceeds with syn selectivity (3:1 to >50:1). A mechanism consistent with the experimental findings that is supported by oxygen-labeling studies is proposed.


Assuntos
Alcenos/química , Peróxidos/química , Hidroxilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA