Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Prog Retin Eye Res ; 102: 101275, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797320

RESUMO

The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.

2.
Ocul Immunol Inflamm ; : 1-12, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687292

RESUMO

PURPOSE: To study the positivity rate of conjunctival realtime polymerase chain reaction (RT-PCR) testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). DESIGN: Systematic review and diagnostic accuracy meta-analysis. METHODS: MEDLINE and EMBASE were queried using medical subject headings terms. Diagnostic accuracy meta-analyses and forest plots were obtained using the RevMan software. RESULTS: After deduplication, appraisal of abstract titles and full-text analysis of 1441 articles, 42 articles with 3351 COVID-19 patients were included in this review. Of these, 412 conjunctival swabs/Schirmer paper strips tested positive for SARS-CoV-2 by RT-PCR. The pooled sensitivity of the RT-PCR tests across the 24 studies with laboratory-confirmed COVID-19 patients was 10.3%. CONCLUSIONS: Only 1 in 10 RT-PCR tests performed on conjunctival swabs were positive for SARS-CoV-2. Although this suggests that SARS-CoV-2 is likely present and detectable in the conjunctiva, this detection method has low diagnostic potential.

3.
NPJ Regen Med ; 9(1): 11, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429307

RESUMO

Pathophysiologic inflammation, e.g., from HSV-1 viral infection, can cause tissue destruction resulting in ulceration, perforation, and ultimately blindness. We developed an injectable Cornea-in-a-Syringe (CIS) sealant-filler to treat damaged corneas. CIS comprises linear carboxylated polymers of inflammation-suppressing 2-methacryloyloxyethyl phosphorylcholine, regeneration-promoting collagen-like peptide, and adhesive collagen-citrate glue. We also incorporated GF19, a modified anti-viral host defense peptide that blocked HSV-1 activity in vitro when released from silica nanoparticles (SiNP-GF19). CIS alone suppressed inflammation when tested in a surgically perforated and HSV-1-infected rabbit corneal model, allowing tissue and nerve regeneration. However, at six months post-operation, only regenerated neocorneas previously treated with CIS with SiNP-GF19 had structural and functional features approaching those of normal healthy corneas and were HSV-1 virus-free. We showed that composite injectable biomaterials can be designed to allow regeneration by modulating inflammation and blocking viral activity in an infected tissue. Future iterations could be optimized for clinical application.

4.
Sci Rep ; 14(1): 4096, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374240

RESUMO

Corneal HSV-1 infections are a leading cause of infectious blindness globally by triggering tissue damage due to the intense inflammation. HSV-1 infections are treated mainly with antiviral drugs that clear the infections but are inefficient as prophylactics. The body produces innate cationic host defence peptides (cHDP), such as the cathelicidin LL37. Various epithelia, including the corneal epithelium, express LL37. cHDPs can cause disintegration of pathogen membranes, stimulate chemokine production, and attract immune cells. Here, we selected GF17, a peptide containing the LL37 fragment with bioactivity but with minimal cytotoxicity, and added two cell-penetrating amino acids to enhance its activity. The resulting GF19 was relatively cell-friendly, inducing only partial activation of antigen presenting immune cells in vitro. We showed that HSV-1 spreads by tunneling nanotubes in cultured human corneal epithelial cells. GF19 given before infection was able to block infection, most likely by blocking viral entry. When cells were sequentially  exposed to viruses and GF19,  the infection was attenuated but not arrested, supporting the contention that the GF19 mode of action was to block viral entry. Encapsulation into silica nanoparticles allowed a more sustained release of GF19, enhancing its activity. GF19 is most likely suitable as a prevention rather than a virucidal treatment.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Sorogrupo , Córnea , Herpesvirus Humano 1/fisiologia
6.
Pharmaceutics ; 15(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37376106

RESUMO

Severe HSV-1 infection can cause blindness due to tissue damage from severe inflammation. Due to the high risk of graft failure in HSV-1-infected individuals, cornea transplantation to restore vision is often contraindicated. We tested the capacity for cell-free biosynthetic implants made from recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) to suppress inflammation and promote tissue regeneration in the damaged corneas. To block viral reactivation, we incorporated silica dioxide nanoparticles releasing KR12, the small bioactive core fragment of LL37, an innate cationic host defense peptide produced by corneal cells. KR12 is more reactive and smaller than LL37, so more KR12 molecules can be incorporated into nanoparticles for delivery. Unlike LL37, which was cytotoxic, KR12 was cell-friendly and showed little cytotoxicity at doses that blocked HSV-1 activity in vitro, instead enabling rapid wound closure in cultures of human epithelial cells. Composite implants released KR12 for up to 3 weeks in vitro. The implant was also tested in vivo on HSV-1-infected rabbit corneas where it was grafted by anterior lamellar keratoplasty. Adding KR12 to RHCIII-MPC did not reduce HSV-1 viral loads or the inflammation resulting in neovascularization. Nevertheless, the composite implants reduced viral spread sufficiently to allow stable corneal epithelium, stroma, and nerve regeneration over a 6-month observation period.

8.
Front Pharmacol ; 14: 1270699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161702

RESUMO

Introduction: Moderate corneal alkali burns such as those sustained from accidental exposure to household chemicals are treated with topical corticosteroids. Side effects include increased intraocular pressure and slowing of wound healing. Here, we compare the effects of a cannabinoid receptor 2 (CB2r) agonist, TA-A001, that is involved in wound healing with that of the corticosteroid, prednisolone. Methods: TA-A001 was encapsulated with a polymeric micelle comprising polyvinylpyrrolidone: polylactide block copolymers referred to as SmartCelle™ to allow delivery of the very hydrophobic drug. Mouse corneas were given moderate alkali burns. Different doses of TA-A001 of 0.125%, 0.25% and 0.5% were used to treat the burns in comparison to the corticosteroid, prednisolone. Results: TA-A001 at 0.25% and 0.5% allowed for faster wound closure. However, the higher 0.5% dose also induced unwanted neovascularization. By comparison, burned corneas treated with prednisolone showed slower healing as well as disorganization of the cornea. Although 0.25% TA-A001 appeared to produce the most-optimal responses, this dose resulted in marked expression of the macrophage chemoattractant protein, MCP-1. However, there was also an increase in CD163 positive stained M2 anti-inflammatory macrophages in the TA-A001 corneas. TA-A001 treated corneas showed the presence of sensory nerve fibers throughout the corneal epithelium including the superficial cell layers as did Substance P staining. Discussion: We found that TA-A001 at the 0.25% doses was able to modulate inflammation resulting from a moderate alkali burn to the cornea. With more extensive testing, TA-A001 might prove to be a potential alternative to corticosteroids for treating alkali burns or other causes of corneal inflammation.

9.
Front Bioeng Biotechnol ; 10: 883977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769102

RESUMO

Sterilization of biodegradable, collagen-based implants is challenging as irradiation sterilization methods can alter their mechanical properties. Electron beam (EB) irradiation is a terminal sterilization method that has been used for biologically-derived implants. Here, recombinant human collagen type III-phosphorylcholine (RHCIII-MPC) hydrogels were irradiated with EB doses of 17, 19, or 21 kGy and their subsequent biocompatibility and ability to promote regeneration in rabbit corneas was evaluated. Unirradiated hydrogels stored in 1% chloroform in phosphate-buffered saline (C-PBS) were the controls. There were no significant differences between irradiated and non-irradiated samples in optical or physical properties (tensile strength, modulus, elasticity), or the ability to support cell growth. However, irradiated implants were more sensitive to high levels of collagenase than unirradiated controls and the C-PBS implants had increased cell growth compared to EB and controls at 72 h. Corneal implants e-beamed at 17 kGy or e-beamed and subsequently frozen (EB-F) to increase shelf-life showed no adverse biological effects of the irradiation. EB, EB-F, and C-PBS implanted corneas all rapidly re-epithelialized but showed mild neovascularization that resolved over 6 months. The regenerated neo-corneas were transparent at 6 months post-operation. In vivo confocal microscopy confirmed normal morphology for the epithelium, stroma, sub-basal nerves and unoperated endothelium. Histology showed that all the regenerated corneas were morphologically similar to the normal. Immunohistochemistry indicated the presence of a differentiated corneal epithelium and functional tear film. In conclusion, the e-beamed corneal implants performed as well as non-irradiated control implants, resulting in fully regenerated neo-corneas with new nerves and without blood vessels or inflammation that may impede vision or corneal function. Therefore, a complete validation study to establish EB irradiation as an effective means for corneal implant sterilization prior to clinical application is necessary as a next step.

10.
Small ; 18(14): e2103364, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35195345

RESUMO

The sensory nervous and immune systems work in concert to preserve homeostasis. While this endogenous interplay protects from danger, it may drive chronic pathologies. Currently, genetic engineering of neurons remains the primary approach to interfere selectively with this potentially deleterious interplay. However, such manipulations are not feasible in a clinical setting. Here, this work reports a nanotechnology-enabled concept to silence subsets of unmodified nociceptor neurons that exploits their ability to respond to heat via the transient receptor potential vanilloid type 1 (TRPV1) channel. This strategy uses laser stimulation of antibody-coated gold nanoparticles to heat-activate TRPV1, turning this channel into a cell-specific drug-entry port. This delivery method allows transport of a charged cationic derivative of an N-type calcium channel blocker (CNCB-2) into targeted sensory fibers. CNCB-2 delivery blocks neuronal calcium currents and neuropeptides release, resulting in targeted silencing of nociceptors. Finally, this work demonstrates the ability of the approach to probe neuro-immune crosstalk by targeting cytokine-responsive nociceptors and by successfully preventing nociceptor-induced CD8+ T-cells polarization. Overall, this work constitutes the first demonstration of targeted silencing of nociceptor neuron subsets without requiring genetic modification, establishing a strategy for interfering with deleterious neuro-immune interplays.


Assuntos
Nanopartículas Metálicas , Nociceptores , Linfócitos T CD8-Positivos , Gânglios Espinais , Ouro , Neurônios , Nociceptores/fisiologia , Canais de Cátion TRPV
11.
Cells Tissues Organs ; 211(4): 506-526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34380144

RESUMO

Corneal blindness accounts for 5.1% of visual deficiency and is the fourth leading cause of blindness globally. An additional 1.5-2 million people develop corneal blindness each year, including many children born with or who later develop corneal infections. Over 90% of corneal blind people globally live in low- and middle-income regions (LMIRs), where corneal ulcers are approximately 10-fold higher compared to high-income countries. While corneal transplantation is an effective option for patients in high-income countries, there is a considerable global shortage of corneal graft tissue and limited corneal transplant programs in many LMIRs. In situ tissue regeneration aims to restore diseases or damaged tissues by inducing organ regeneration. This can be achieved in the cornea using biomaterials based on extracellular matrix (ECM) components like collagen, hyaluronic acid, and silk. Solid corneal implants based on recombinant human collagen type III were successfully implanted into patients resulting in regeneration of the corneal epithelium, stroma, and sub-basal nerve plexus. As ECM crosslinking and manufacturing methods improve, the focus of biomaterial development has shifted to injectable, in situ gelling formulations. Collagen, collagen-mimetic, and gelatin-based in situ gelling formulas have shown the ability to repair corneal wounds, surgical incisions, and perforations in in-vivo models. Biomaterial approaches may not be sufficient to treat inflammatory conditions, so other cell-free therapies such as treatment with tolerogenic exosomes and extracellular vesicles may improve treatment outcomes. Overall, many of the technologies described here show promise as future medical devices or combination products with cell or drug-based therapies. In situ tissue regeneration, particularly with liquid formulas, offers the ability to triage and treat corneal injuries and disease with a single regenerative solution, providing alternatives to organ transplantation and improving patient outcomes.


Assuntos
Córnea , Transplante de Córnea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Cegueira , Criança , Colágeno/farmacologia , Córnea/fisiologia , Humanos
12.
Front Immunol ; 12: 759679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868000

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1-2% of the population aged 65 and over. Additionally, non-motor symptoms such as pain and gastrointestinal dysregulation are also common in PD. These impairments might stem from a dysregulation within the gut-brain axis that alters immunity and the inflammatory state and subsequently drives neurodegeneration. There is increasing evidence linking gut dysbiosis to the severity of PD's motor symptoms as well as to somatosensory hypersensitivities. Altogether, these interdependent features highlight the urgency of reviewing the links between the onset of PD's non-motor symptoms and gut immunity and whether such interplays drive the progression of PD. This review will shed light on maladaptive neuro-immune crosstalk in the context of gut dysbiosis and will posit that such deleterious interplays lead to PD-induced pain hypersensitivity.


Assuntos
Disbiose/imunologia , Dor/imunologia , Doença de Parkinson/imunologia , Humanos
13.
Phys Chem Chem Phys ; 23(43): 24545-24549, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704576

RESUMO

We have studied the suitability of using a molecular rotor-based steady-state fluorometric assay for evaluating changes in both the conformation and the viscosity of collagen-like peptide solutions. Our results indicate that a positive charge incorporated on the hydrophobic tail of the BODIPY molecular rotor favours the dye specificity as a reporter for viscosity of these solutions.


Assuntos
Peptídeos/química , Compostos de Boro/química , Colágeno/química , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Soluções , Espectrometria de Fluorescência , Viscosidade
14.
iScience ; 24(5): 102443, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34013169

RESUMO

Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.

15.
Commun Biol ; 4(1): 608, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021240

RESUMO

The long-term survival of biomaterial implants is often hampered by surgery-induced inflammation that can lead to graft failure. Considering that most corneas receiving grafts are either pathological or inflamed before implantation, the risk of rejection is heightened. Here, we show that bioengineered, fully synthetic, and robust corneal implants can be manufactured from a collagen analog (collagen-like peptide-polyethylene glycol hybrid, CLP-PEG) and inflammation-suppressing polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC) when stabilized with the triazine-based crosslinker 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The resulting CLP-PEG-MPC implants led to reduced corneal swelling, haze, and neovascularization in comparison to CLP-PEG only implants when grafted into a mini-pig cornea alkali burn model of inflammation over 12 months. Implants incorporating MPC allowed for faster nerve regeneration and recovery of corneal sensation. CLP-PEG-MPC implants appear to be at a more advanced stage of regeneration than the CLP-PEG only implants, as evidenced by the presence of higher amounts of cornea-specific type V collagen, and a corresponding decrease in the presence of extracellular vesicles and exosomes in the corneal stroma, in keeping with the amounts present in healthy, unoperated corneas.


Assuntos
Álcalis/toxicidade , Queimaduras Químicas/complicações , Colágeno/farmacologia , Córnea/citologia , Hidrogéis/administração & dosagem , Inflamação/prevenção & controle , Fosforilcolina/química , Animais , Materiais Biocompatíveis/química , Queimaduras Químicas/patologia , Colágeno/química , Humanos , Hidrogéis/química , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Suínos , Porco Miniatura
16.
Front Bioeng Biotechnol ; 9: 773294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976970

RESUMO

Purpose: To evaluate long-term in vivo functionality of corneas regenerated using a cell-free, liquid hydrogel filler (LiQD Cornea) after deep corneal trauma in the feline model. Methods: Two healthy cats underwent 4 mm diameter stepwise 250/450 µm deep surgical corneal ablation with and without needle perforation. The filler comprising 10% (w/w) collagen-like peptide conjugated to polyethylene glycol (CLP-PEG) and 1% fibrinogen and crosslinked with 2% (w/w) 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), was applied to the wound bed previously coated with thrombin (250 U/ml). In situ gelation occurred within 5 min, and a temporary tarsorrhaphy was performed. Eyes were examined weekly for 1 month, then monthly over 12 months. Outcome parameters included slit-lamp, Scheimpflug tomography, optical coherence tomography, confocal and specular microscopy, and immunohistochemistry studies. Results: The gelled filler was seamlessly incorporated, supporting smooth corneal re-epithelialization. Progressive in-growth of keratocytes and nerves into the filler corresponding to the mild haze observed faded with time. The regenerated neo-cornea remained stably integrated throughout the 12 months, without swelling, inflammation, infection, neovascularization, or rejection. The surrounding host stroma and endothelium remained normal at all times. Tomography confirmed restoration of a smooth surface curvature. Conclusion: Biointegration of this hydrogel filler allowed stable restoration of corneal shape and transparency in the feline model, with less inflammation and no neovascularization compared to previous reports in the minipig and rabbit models. It offers a promising alternative to cyanoacrylate glue and corneal transplantation for ulcerated and traumatized corneas in human patients.

17.
Sci Adv ; 6(25)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32917640

RESUMO

Transplantation with donor corneas is the mainstay for treating corneal blindness, but a severe worldwide shortage necessitates the development of other treatment options. Corneal perforation from infection or inflammation is sealed with cyanoacrylate glue. However, the resulting cytotoxicity requires transplantation. LiQD Cornea is an alternative to conventional corneal transplantation and sealants. It is a cell-free, liquid hydrogel matrix for corneal regeneration, comprising short collagen-like peptides conjugated with polyethylene glycol and mixed with fibrinogen to promote adhesion within tissue defects. Gelation occurs spontaneously at body temperature within 5 min. Light exposure is not required-particularly advantageous because patients with corneal inflammation are typically photophobic. The self-assembling, fully defined, synthetic collagen analog is much less costly than human recombinant collagen and reduces the risk of immune rejection associated with xenogeneic materials. In situ gelation potentially allows for clinical application in outpatient clinics instead of operating theaters, maximizing practicality, and minimizing health care costs.


Assuntos
Transplante de Córnea , Colágeno , Córnea , Transplante de Córnea/métodos , Humanos , Inflamação , Regeneração
18.
Methods Mol Biol ; 2145: 169-183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542607

RESUMO

Recombinant or artificial designer collagens have developed to a point where they are viable candidates for replacing extracted animal collagens in regenerative medicine applications. Biomimetic corneas made have shown promise as replacements for human donor corneas, and have previously been fabricated from several different collagens or collagen-like peptides (CLPs). Prokaryotic expression systems allow for cheap, rapid, gram scale production of collagens/CLPs. Here, we describe a procedure for production of collagen-like peptides for the manufacture of a biomimetic cornea.


Assuntos
Córnea/crescimento & desenvolvimento , Próteses e Implantes , Regeneração/genética , Medicina Regenerativa/métodos , Biomimética , Colágeno/química , Colágeno/uso terapêutico , Córnea/fisiologia , Humanos , Implantes Experimentais , Doadores de Tecidos
19.
RSC Adv ; 10(40): 23675-23681, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517329

RESUMO

We report the development and use of a light-mediated in situ grafting technology for the surface modification of biosynthetic corneal implants with peptide-capped nanoparticles (15-65 nm). The resulting materials have antimicrobial properties in bacterial suspension and also reduced the extent of biofilm formation. Our in situ grafting technology offers a rapid route for the introduction of antimicrobial properties to premoulded corneal implants, and potentially other soft implant targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA