Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Microbiol Rev ; 34(3): e0012618, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34105993

RESUMO

Patient care and public health require timely, reliable laboratory testing. However, clinical laboratory professionals rarely know whether patient specimens contain infectious agents, making ensuring biosafety while performing testing procedures challenging. The importance of biosafety in clinical laboratories was highlighted during the 2014 Ebola outbreak, where concerns about biosafety resulted in delayed diagnoses and contributed to patient deaths. This review is a collaboration between subject matter experts from large and small laboratories and the federal government to evaluate the capability of clinical laboratories to manage biosafety risks and safely test patient specimens. We discuss the complexity of clinical laboratories, including anatomic pathology, and describe how applying current biosafety guidance may be difficult as these guidelines, largely based on practices in research laboratories, do not always correspond to the unique clinical laboratory environments and their specialized equipment and processes. We retrospectively describe the biosafety gaps and opportunities for improvement in the areas of risk assessment and management; automated and manual laboratory disciplines; specimen collection, processing, and storage; test utilization; equipment and instrumentation safety; disinfection practices; personal protective equipment; waste management; laboratory personnel training and competency assessment; accreditation processes; and ethical guidance. Also addressed are the unique biosafety challenges successfully handled by a Texas community hospital clinical laboratory that performed testing for patients with Ebola without a formal biocontainment unit. The gaps in knowledge and practices identified in previous and ongoing outbreaks demonstrate the need for collaborative, comprehensive solutions to improve clinical laboratory biosafety and to better combat future emerging infectious disease outbreaks.


Assuntos
Serviços de Laboratório Clínico , Contenção de Riscos Biológicos , Surtos de Doenças/prevenção & controle , Humanos , Laboratórios , Estudos Retrospectivos
2.
Cell Microbiol ; 11(12): 1735-49, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19650828

RESUMO

The Bordetella type III secretion system (T3SS) effector protein BteA is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells. We show that BteA is highly conserved and functionally interchangeable between Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis. The identification of BteA sequences required for cytotoxicity allowed the construction of non-cytotoxic mutants for localization studies. BteA derivatives were targeted to lipid rafts and showed clear colocalization with cortical actin, ezrin and the lipid raft marker GM1. We hypothesized that BteA associates with the cytoplasmic face of lipid rafts to locally modulate host cell responses to Bordetella attachment. B. bronchiseptica adhered to host cells almost exclusively to GM1-enriched lipid raft microdomains and BteA colocalized to these same sites following T3SS-mediated translocation. Disruption of lipid rafts with methyl-beta-cyclodextrin protected cells from T3SS-induced cytotoxicity. Localization to lipid rafts was mediated by a 130-amino-acid lipid raft targeting domain at the N-terminus of BteA, and homologous domains were identified in virulence factors from other bacterial species. Lipid raft targeting sequences from a T3SS effector (Plu4750) and an RTX-type toxin (Plu3217) from Photorhabdus luminescens directed fusion proteins to lipid rafts in a manner identical to the N-terminus of BteA.


Assuntos
Motivos de Aminoácidos , Proteínas de Bactérias/química , Infecções por Bordetella/metabolismo , Bordetella/metabolismo , Microdomínios da Membrana/metabolismo , Via Secretória , Fatores de Virulência de Bordetella/metabolismo , Sequência de Aminoácidos , Animais , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella/efeitos dos fármacos , Bordetella/genética , Infecções por Bordetella/microbiologia , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Ratos , beta-Ciclodextrinas/farmacologia
3.
Appl Environ Microbiol ; 72(1): 793-801, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16391120

RESUMO

Enteric microbiota play a variety of roles in intestinal health and disease. While bacteria in the intestine have been broadly characterized, little is known about the abundance or diversity of enteric fungi. This study utilized a culture-independent method termed oligonucleotide fingerprinting of rRNA genes (OFRG) to describe the compositions of fungal and bacterial rRNA genes from small and large intestines (tissue and luminal contents) of restricted-flora and specific-pathogen-free mice. OFRG analysis identified rRNA genes from all four major fungal phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblages of fungal rRNA sequences were related to the genera Acremonium, Monilinia, Fusarium, Cryptococcus/Filobasidium, Scleroderma, Catenomyces, Spizellomyces, Neocallimastix, Powellomyces, Entophlyctis, Mortierella, and Smittium and the order Mucorales. The majority of bacterial rRNA gene clones were affiliated with the taxa Bacteroidetes, Firmicutes, Acinetobacter, and Lactobacillus. Sequence-selective PCR analyses also detected several of these bacterial and fungal rRNA genes in the mouse chow. Fluorescence in situ hybridization analysis with a fungal small-subunit rRNA probe revealed morphologically diverse microorganisms resident in the mucus biofilm adjacent to the cecal and proximal colonic epithelium. Hybridizing organisms comprised about 2% of the DAPI (4',6-diamidino-2-phenylindole, dihydrochloride)-positive organisms in the mucus biofilm, but their abundance in fecal material may be much lower. These data indicate that diverse fungal taxa are present in the intestinal microbial community. Their abundance suggests that they may play significant roles in enteric microbial functions.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Genes de RNAr , Intestino Grosso/microbiologia , Intestino Delgado/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , DNA Fúngico/análise , DNA Fúngico/isolamento & purificação , Feminino , Fungos/genética , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Ribossômico/genética , Análise de Sequência de DNA , Organismos Livres de Patógenos Específicos
4.
Mol Microbiol ; 58(1): 267-79, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16164564

RESUMO

Bordetella bronchiseptica utilizes a type III secretion system (TTSS) for induction of non-apoptotic cytotoxicity in host cells and modulation of host immunity. The identity of Bordetella TTSS effectors, however, has remained elusive. Here we report a genome-wide screen for TTSS effectors based on shared biophysical and functional characteristics of class I chaperones and their frequent colocalization with TTSS effectors. When applied to B. bronchiseptica, the screen identified the first TTSS chaperone-effector locus, btcA-bteA, and we experimentally confirmed its function. Expression of bteA is co-ordinated with expression of TTSS apparatus genes, BteA is secreted through the TTSS of B. bronchiseptica, it is required for cytotoxicity towards mammalian cells, and it is highly conserved in the human-adapted subspecies B. pertussis and B. parapertussis. Transfection of bteA into epithlieal cells results in rapid cell death, indicating that BteA alone is sufficient to induce potent cytotoxicity. Finally, an in vitro interaction between BteA and BtcA was demonstrated. The search for TTSS chaperones and effectors was then expanded to other bacterial genomes, including mammalian and insect pathogens, where we identified a large number of novel candidate chaperones and effectors. Although the majority of putative effectors are proteins of unknown function, several have similarities to eukaryotic protein domains or previously identified effectors from other species.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Técnicas Genéticas , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/isolamento & purificação , Toxinas Bacterianas/metabolismo , Western Blotting , Bordetella parapertussis/genética , Bordetella pertussis/genética , Morte Celular , Biologia Computacional , Sequência Conservada , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Hemólise , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Chaperonas Moleculares/metabolismo , Filogenia , Ligação Proteica , Transporte Proteico , Homologia de Sequência de Aminoácidos
5.
J Biol Chem ; 279(36): 37651-61, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15184383

RESUMO

Tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCgamma in vitro, the specific kinase(s) controlling BCR-dependent PLCgamma activation in vivo remains unknown. Bruton's tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCgamma2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCgamma2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCgamma2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr(753) and Tyr(759). Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCgamma2 carboxyl-terminal sites, Tyr(1197) and Tyr(1217), was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCgamma2 SH2-SH3 linker.


Assuntos
Cálcio/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fosfolipases Tipo C/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Sinalização do Cálcio , Linhagem Celular , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Fosfolipase C gama , Fosforilação , Homologia de Sequência de Aminoácidos , Fosfolipases Tipo C/química , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA