Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 30(12): 2418-2432, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34651380

RESUMO

N-acetylated sugars are often found, for example, on the lipopolysaccharides of Gram-negative bacteria, on the S-layers of Gram-positive bacteria, and on the capsular polysaccharides. Key enzymes involved in their biosynthesis are the sugar N-acetyltransferases. Here, we describe a structural and functional analysis of one such enzyme from Helicobacter pullorum, an emerging pathogen that may be associated with gastroenteritis and gallbladder and liver diseases. For this analysis, the gene BA919-RS02330 putatively encoding an N-acetyltransferase was cloned, and the corresponding protein was expressed and purified. A kinetic analysis demonstrated that the enzyme utilizes dTDP-3-amino-3,6-dideoxy-d-glucose as a substrate as well as dTDP-3-amino-3,6-dideoxy-d-galactose, albeit at a reduced rate. In addition to this kinetic analysis, a similar enzyme from Helicobacter bilis was cloned and expressed, and its kinetic parameters were determined. Seven X-ray crystallographic structures of various complexes of the H. pullorum wild-type enzyme (or the C80T variant) were determined to resolutions of 1.7 Å or higher. The overall molecular architecture of the H. pullorum N-acetyltransferase places it into the Class II left-handed-ß-helix superfamily (LßH). Taken together, the data presented herein suggest that 3-acetamido-3,6-dideoxy-d-glucose (or the galactose derivative) is found on either the H. pullorum O-antigen or in another of its complex glycoconjugates. A BLAST search suggests that more than 50 non-pylori Helicobacter spp. have genes encoding N-acetyltransferases. Given that there is little information concerning the complex glycans in non-pylori Helicobacter spp. and considering their zoonotic potential, our results provide new biochemical insight into these pathogens.


Assuntos
Acetiltransferases/química , Proteínas de Bactérias/química , Desoxiaçúcares/química , Helicobacter/enzimologia , Lipopolissacarídeos/química , Nucleotídeos de Timina/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Desoxiaçúcares/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Helicobacter/química , Cinética , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Nucleotídeos de Timina/metabolismo
2.
Protein Sci ; 30(10): 2144-2160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34379357

RESUMO

It is now well established that the Gram-negative bacterium, Helicobacter pylori, causes gastritis in humans. In recent years, it has become apparent that the so-called non-pylori Helicobacters, normally infecting pigs, cats, and dogs, may also be involved in human pathology via zoonotic transmission. Indeed, more than 30 species of non-pylori Helicobacters have been identified thus far. One such organism is Helicobacter canadensis, an emerging pathogen whose genome sequence was published in 2009. Given our long-standing interest in the biosynthesis of N-formylated sugars found in the O-antigens of some Gram-negative bacteria, we were curious as to whether H. canadensis produces such unusual carbohydrates. Here, we demonstrate using both biochemical and structural techniques that the proteins encoded by the HCAN_0198, HCAN_0204, and HCAN_0200 genes in H. canadensis, correspond to a 3,4-ketoisomerase, a pyridoxal 5'-phosphate aminotransferase, and an N-formyltransferase, respectively. For this investigation, five high-resolution X-ray structures were determined and the kinetic parameters for the isomerase and the N-formyltransferase were measured. Based on these data, we suggest that the unusual sugar, 3-formamido-3,6-dideoxy-d-glucose, will most likely be found in the O-antigen of H. canadensis. Whether N-formylated sugars found in the O-antigen contribute to virulence is presently unclear, but it is intriguing that they have been observed in such pathogens as Francisella tularensis, Mycobacterium tuberculosis, and Brucella melitensis.


Assuntos
Proteínas de Bactérias , Metabolismo dos Carboidratos , Carboidratos , Helicobacter , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboidratos/biossíntese , Carboidratos/química , Carboidratos/genética , Cristalografia por Raios X , Helicobacter/enzimologia , Helicobacter/genética , Helicobacter pylori/enzimologia , Helicobacter pylori/genética
4.
J Invest Dermatol ; 125(5): 920-7, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16297190

RESUMO

The skin disease erythrokeratoderma variabilis (EKV) has been shown to be associated with mutations in GJB3 and GJB4 encoding connexin (Cx)31 and Cx30.3, respectively. Gap junctions composed of Cx proteins are intracellular channels providing a mechanism of synchronized cellular response facilitating metabolic and electronic functions of the cell. In the skin, Cx31 and Cx30.3 are expressed in the stratum granulosum of the epidermis with a suggested role in late keratinocyte differentiation. Molecular investigations of GJB3 and GJB4 were performed in five pedigrees and three sporadic cases of EKV. Mutational analyzes revealed disease-associated Cx31 or Cx30.3 mutations in only three probands of which two were novel mutations and one was a recurrent mutation. These genetic studies further demonstrate the heterogeneous nature of the erythrokeratodermas as not all individuals that were clinically diagnosed with EKV harbor Cx31 or Cx30.3 mutations.


Assuntos
Conexinas/genética , Hiperceratose Epidermolítica/diagnóstico , Hiperceratose Epidermolítica/genética , Análise Mutacional de DNA , Feminino , Humanos , Hiperceratose Epidermolítica/tratamento farmacológico , Masculino , Mutação , Linhagem , Polimorfismo Genético , Retinoides/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA