Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Nanomedicine ; 19: 4263-4278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766663

RESUMO

Introduction: Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP). Methods: We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy. Results: We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy. Conclusion: The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.


Assuntos
Neoplasias da Mama , Verde de Indocianina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Receptores da Transferrina , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Verde de Indocianina/farmacologia , Verde de Indocianina/administração & dosagem , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Humanos , Feminino , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Receptores da Transferrina/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Apoferritinas/química , Ferritinas/química , Antígenos CD/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Células MCF-7
2.
Front Public Health ; 11: 1271550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026316

RESUMO

The research study aimed at providing an accurate low-dose benzene exposure assessment method, by validating diffusive monitoring techniques for benzene personal exposure measurements at workplaces where benzene concentrations are expected in the low ppb range, such as in the present-day chemical, petrochemical, foundry, and pharmaceutical industry. The project was aimed at addressing the need for a robust and fully validated method to perform personal exposure measurements considering that the occupational exposure limit value for benzene is going to be significantly lowered in the next few years. Diffusive sampling offers a reliable alternative to pumped sampling methods, intrinsic safety in potentially explosive atmospheres, lightness, and ease of use. In this study, the radiello® diffusive sampler, with the packed activated charcoal RAD130 adsorbing substrate [suitable for solvent desorption and analysis by high-resolution gas chromatography-flame ionization detection (HRGC-FID)], was used. The experiments have been conducted following the ISO 23320 standard in the range from 0.005 to 0.1 ppm (16 to 320 µg/m3), yielding a full validation of the sampling and analytical method. The sampler performances have fulfilled all requisites of the ISO 23320 standard, in particular: bias due to the selection of a non-ideal sorbent is lower than 10% (no significant back diffusion of benzene due to concentration change in the atmosphere); bias due to storage of samples for up to 2 months is lower than 10%; nominal uptake rate for benzene on RAD130 is 74.65 mL/min; and expanded uncertainty of the sampling and analytical method is 20.6%. The sampling and analytical method is therefore fit-for-purpose for the personal exposure measurements aimed at testing compliance with occupational exposure limit values for benzene. The method is also fit for short-duration exposure monitoring related to specific tasks, and other volatile organic compounds, usually found in the same workplaces, such as aliphatic and aromatic hydrocarbons and some oxygenated compounds, have also been studied. In particular, n-hexane and isopropyl benzene, whose classification is currently under revision, can be efficiently monitored by this technique.


Assuntos
Exposição Ocupacional , Compostos Orgânicos Voláteis , Benzeno/análise , Carvão Vegetal/análise , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Compostos Orgânicos Voláteis/análise
3.
J Appl Toxicol ; 43(12): 1819-1839, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37431083

RESUMO

In the last decades, advanced glycation end-products (AGEs) have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes including various neurological disorders and cognitive decline age related. Methylglyoxal (MG) is one of the reactive dicarbonyl precursors of AGEs, mainly generated as a by-product of glycolysis, whose accumulation induces neurotoxicity. In our study, MG cytotoxicity was evaluated employing a human stem cell-derived model, namely, neuron-like cells (hNLCs) transdifferentiated from mesenchymal stem/stromal cells, which served as a source of human based species-specific "healthy" cells. MG increased ROS production and induced the first characteristic apoptotic hallmarks already at low concentrations (≥10 µM), decreased the cell growth (≥5-10 µM) and viability (≥25 µM), altered Glo-1 and Glo-2 enzymes (≥25 µM), and markedly affected the neuronal markers MAP-2 and NSE causing their loss at low MG concentrations (≥10 µM). Morphological alterations started at 100 µM, followed by even more marked effects and cell death after few hours (5 h) from 200 µM MG addition. Substantially, most effects occurred as low as 10 µM, concentration much lower than that reported from previous observations using different in vitro cell-based models (e.g., human neuroblastoma cell lines, primary animal cells, and human iPSCs). Remarkably, this low effective concentration approaches the level range measured in biological samples of pathological subjects. The use of a suitable cellular model, that is, human primary neurons, can provide an additional valuable tool, mimicking better the physiological and biochemical properties of brain cells, in order to evaluate the mechanistic basis of molecular and cellular alterations in CNS.


Assuntos
Células-Tronco Mesenquimais , Neuroblastoma , Síndromes Neurotóxicas , Animais , Humanos , Aldeído Pirúvico/toxicidade , Neurônios , Células-Tronco Mesenquimais/patologia , Produtos Finais de Glicação Avançada/toxicidade , Produtos Finais de Glicação Avançada/metabolismo
4.
ACS Omega ; 8(51): 48735-48741, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162787

RESUMO

We investigated the relevance of encapsulation in H-ferritin nanocages (HFn) in determining an improved tumor-targeted delivery of indocyanine green (ICG). Since from previous experiments, the administration of HFn loaded with ICG (HFn-ICG) resulted in an increased fluorescence signal of ICG, our aim was to uncover if the nanoformulation could have a major role in driving a specific targeting of the dye to the tumor or rather a protective action on ICG's fluorescence. Here, we took advantage of a combined analysis involving ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) on murine tissue homogenates matched with fluorescence intensities analysis detected by ex vivo optical imaging. The quantification of ICG content performed on different organs over time combined with the fluorescent signal detection confirmed the superior delivery of ICG thanks to the nanoformulation. Our results showed that HFn-ICG drives a real accumulation at the tumor instead of only having a role in the preservation of ICG's fluorescence, further supporting its use as a delivery system of ICG for fluorescence-guided surgery applications in oncology.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35886450

RESUMO

In the present study, surface contamination where antineoplastic drugs (ADs) are present was investigated, as occupational exposure risk is still an open debate. Despite recommendations and safety standard procedures being in place in health care settings, quantifiable levels of ADs are being reported in the recent literature. Thus, a survey monitoring program was conducted over five years (2016-2021) in nine Italian hospitals. The repeated surveys produced 8288 data points that have been grouped according to the main hospital settings, such as pharmacy areas and patient care units. Based on the most often prepared ADs, the investigated drugs were cyclophosphamide (CP), gemcitabine (GEM), 5-fluorouracil (5-FU), and platinum compounds (Pt). Patient care units had a frequency of positive wipe samples (59%) higher than pharmacies (44%). Conversely, pharmacies had a frequency of positive pad samples higher (24%) than patient care units (10%). Moreover, by statistical analysis, pad samples had a significantly higher risk of contamination in pharmacy areas than in patient care units. In this study, the 75th and the 90th percentiles of the contamination levels were obtained. The 90th percentile was chosen to describe a suitable benchmark that compares results obtained by the present research with those previously reported in the literature. Based upon surface contamination loads, our data showed that 5-FU had the highest concentration values, but the lowest frequency of positive samples. In pharmacy areas, the 90th percentile of 5-FU data distribution was less than 0.346 ng/cm2 and less than 0.443 ng/cm2 in patient care units. AD levels are higher than those reported for health care settings in other European countries yet trends of contamination in Italy have shown to decrease over time.


Assuntos
Antineoplásicos , Exposição Ocupacional , Antineoplásicos/análise , Monitoramento Ambiental/métodos , Contaminação de Equipamentos , Fluoruracila/análise , Hospitais , Humanos , Exposição Ocupacional/análise
6.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745086

RESUMO

Rosa x damascena Mill. essential oil is mainly used in the cosmetics and perfumery industry, but it also finds application in the food industry as a flavoring agent. The chemical composition of essential oils is affected by environment, soil, harvesting technique, storage condition, and extraction methods. Nowadays, the study and design of greener, more efficient, and sustainable extractive procedures is the main and strategic focus in the chemical research and development of botanical derivatives, especially as regards fragrances and essential oils. Several technologies are available, and the best method to use depends on the desired chemicals, but conventional extractive processes are often laborious and time-consuming, involve large amounts of solvents, and may cause the partial loss of volatiles, affecting the quality of the final product. In the last decade, microwave irradiation has been successfully applied to classical techniques, often improving the general extractive efficiency and extract quality. In the present paper, as a preliminary analytical screening approach, two microwave-mediated techniques, Solvent-Free Microwave Extraction (SFME) and Microwave Hydrodiffusion and Gravity (MHG), and two conventional procedures, Hydrodistillation (HD) and Steam Distillation (SD), were applied and compared for the extraction of volatile compounds from R. x damascena fresh petals to highlight differences and advantages of the selected procedure and of the obtained extracts useful in a cosmetic context as fragrances or active ingredients. The chemical composition of the extracts was investigated by GC-MS and GC-FID. Sixty-one components, distributed in the four techniques, were identified. SD and HD are dominated by oxygenated terpenes (59.01% and 50.06%, respectively), while MHG and SFME extracts are dominated by alcohols (61.67% and 46.81%, respectively). A relevant variability in the composition of the extracts relating to the extraction techniques used was observed. To point out the correlation between the process and composition of the obtained natural products, principal component analysis (PCA) of the data extracted from GC-FID was used. Taking into account a cosmetic application, SFME shows several advantages when compared with the other procedures. The extract (obtained in a significantly higher amount) contains a meaningful lower level of potential fragrance allergenic compounds and quite a double amount of benzyl alcohol and 2-phenyl ethanol that can also enhance the preservative action in personal care products.


Assuntos
Cosméticos , Óleos Voláteis , Rosa , Micro-Ondas , Óleos Voláteis/química , Extratos Vegetais/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-35329423

RESUMO

The high toxicity of antineoplastic drugs (ADs) makes them dangerous not only for patients, but also for exposed workers. Therefore, the aim of this review was to provide an updated overview of the biological monitoring of occupational AD exposure in order to extrapolate information useful to improve risk assessment and management strategies in workplaces. Several studies demonstrated that remarkable portions of healthcare workers may have traces of these substances or their metabolites in biological fluids, although with some conflicting results. Nurses, directly engaged in AD handling, were the occupational category at higher risk of contamination, although, in some cases, personnel not involved in AD-related tasks also showed quantifiable internal doses. Overall, further research carried out on greater sample sizes appears necessary to gain deeper insight into the variability retrieved in the reported results. This may be important to understand the impact of the extent of ADs use, different handling, procedures, and cleaning practices, spill occurrence, training of the workforce, as well as the adoption of adequate collective and personal protective equipment in affecting the occupational exposure levels. This may support the achievement of the greatest clinical efficiency of such therapies while assuring the health and safety of involved workers.


Assuntos
Antineoplásicos , Exposição Ocupacional , Antineoplásicos/análise , Monitoramento Biológico , Monitoramento Ambiental/métodos , Pessoal de Saúde , Humanos , Exposição Ocupacional/análise , Equipamento de Proteção Individual
8.
Ind Health ; 60(4): 371-386, 2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34719600

RESUMO

This paper presents the results of a measurement campaign for assessing the release of particles and the potential exposure of workers in metal additive manufacturing. The monitoring deals with three environments, i.e., two academic laboratories and one production site, while printing different metallic alloys for chemical composition and size. The monitored devices implement different metal 3D printing processes, named Selective Laser Melting, Laser Metal Deposition and Hybrid Laser Metal Deposition, providing a wide overview of the current laser-based Additive Manufacturing technologies. Despite showing the generation of metal powders during the printing processes, the usual measurements based on gravimetric analysis did not highlight concentrations higher than the international exposure limits for the selected metals (i.e., chromium, cobalt, iron, nickel, and copper). Additional data, collected through a cascade impactor and particle counter coupled with the achievements from previous measurements reported in literature, indicate that during the printing operations, fine and ultrafine metal particles might be generated. Finally, the authors introduced a preliminary characterisation of the particles released during the different phases of the investigated AM processes (powder charging, printing, part cleaning and support removal), highlighting how the different operations may affect the particle size and concentration.


Assuntos
Metais , Material Particulado , Cromo/química , Humanos , Lasers , Tamanho da Partícula , Material Particulado/análise
9.
Plants (Basel) ; 10(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451762

RESUMO

A detailed chemical composition of Dendrobium essential oil has been only reported for a few main species. This article is the first to evaluate the essential oil composition, obtained by steam distillation, of five Indian Dendrobium species: Dendrobium chrysotoxum Lindl., Dendrobium harveyanum Rchb.f., and Dendrobium wardianum R.Warner (section Dendrobium), Dendrobium amabile (Lour.) O'Brien, and Dendrobium chrysanthum Wall. ex Lindl. (section Densiflora). We investigate fresh flower essential oil obtained by steam distillation, by GC/FID and GC/MS. Several compounds are identified, with a peculiar distribution in the species: Saturated hydrocarbons (range 2.19-80.20%), organic acids (range 0.45-46.80%), esters (range 1.03-49.33%), and alcohols (range 0.12-22.81%). Organic acids are detected in higher concentrations in D. chrysantum, D. wardianum, and D. harveyanum (46.80%, 26.89%, and 7.84%, respectively). This class is represented by palmitic acid (13.52%, 5.76, and 7.52%) linoleic acid (D. wardianum 17.54%), and (Z)-11-hexadecenoic acid (D. chrysantum 29.22%). Esters are detected especially in species from section Dendrobium, with ethyl linolenate, methyl linoleate, ethyl oleate, and ethyl palmitate as the most abundant compounds. Alcohols are present in higher concentrations in D. chrysantum (2.4-di-tert-butylphenol, 22.81%), D. chrysotoxum (1-octanol, and 2-phenylethanol, 2.80% and 2.36%), and D. wardianum (2-phenylethanol, 4.65%). Coumarin (95.59%) is the dominant compound in D. amabile (section Densiflora) and detected in lower concentrations (range 0.19-0.54%) in other samples. These volatile compounds may represent a particular feature of these plant species, playing a critical role in interacting with pollinators.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33925535

RESUMO

BACKGROUND: The main anthropic sources of exposure to airborne benzene include vehicular traffic, cigarette smoke, and industrial emissions. METHODS: To detect early genotoxic effects of environmental exposure to benzene, we monitored environmental, personal, and indoor airborne benzene in children living in an urban area and an area near a petrochemical plant. We also used urinary benzene and S-phenylmercapturic acid (S-PMA) as biomarkers of benzene exposure and urinary 8-hydroxydeoxyguanosine (8-OHdG) as a biomarker of early genotoxic effects. RESULTS: Although always below the European Union limit of 5 µg/m3, airborne benzene levels were more elevated in the indoor, outdoor, and personal samples from the industrial surroundings compared to the urban area (p = 0.026, p = 0.005, and p = 0.001, respectively). Children living in the surroundings of the petrochemical plant had urinary benzene values significantly higher than those from the urban area in both the morning and evening samples (p = 0.01 and p = 0.02, respectively). Results of multiple regression modelling showed that age was a significant predictor of 8-OHdG excretion, independent of the sampling hour. Moreover, at the low exposure level experienced by the children participating in this study, neither personal or indoor airborne benzene level, nor personal monitoring data, affected 8-OHdG excretion. CONCLUSIONS: Our results suggest the importance of biological monitoring of low-level environmental exposure and its relation to risk of genotoxic effects among children.


Assuntos
Benzeno , Exposição Ocupacional , Benzeno/análise , Benzeno/toxicidade , Biomarcadores , Criança , Dano ao DNA , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Itália , Exposição Ocupacional/análise , Estresse Oxidativo , Instituições Acadêmicas
11.
Cells ; 10(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562504

RESUMO

Cancer-associated fibroblasts (CAFs) are key actors in regulating cancer progression. They promote tumor growth, metastasis formation, and induce drug resistance. For these reasons, they are emerging as potential therapeutic targets. Here, with the aim of developing CAF-targeted drug delivery agents, we functionalized H-ferritin (HFn) nanocages with fibroblast activation protein (FAP) antibody fragments. Functionalized nanocages (HFn-FAP) have significantly higher binding with FAP+ CAFs than with FAP- cancer cells. We loaded HFn-FAP with navitoclax (Nav), an experimental Bcl-2 inhibitor pro-apoptotic drug, whose clinical development is limited by its strong hydrophobicity and toxicity. We showed that Nav is efficiently loaded into HFn (HNav), maintaining its mechanism of action. Incubating Nav-loaded functionalized nanocages (HNav-FAP) with FAP+ cells, we found significantly higher cytotoxicity as compared to non-functionalized HNav. This was correlated with a significantly higher drug release only in FAP+ cells, confirming the specific targeting ability of functionalized HFn. Finally, we showed that HFn-FAP is able to reach the tumor and to target CAFs in a mouse syngeneic model of triple negative breast cancer after intravenous administration. Our data show that HNav-FAP could be a promising tool to enhance specific drug delivery into CAFs, thus opening new therapeutic possibilities focused on tumor microenvironment.


Assuntos
Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Apoferritinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal/métodos , Nanopartículas/metabolismo , Sulfonamidas/uso terapêutico , Engenharia Tecidual/métodos , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Feminino , Humanos , Camundongos , Sulfonamidas/farmacologia
12.
J Occup Med Toxicol ; 16(1): 4, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563312

RESUMO

BACKGROUND: Many workers are exposed to wood dust (WD) and formaldehyde (FA), whose carcinogenic activity is supposed to be oxidative stress-mediated. This study aims to assess to what extent the occupational exposure to WD and FA, albeit within regulatory limits, could result in OS induction in a woodworkers' population. METHODS: The sample population consisted of 127 woodworkers from 4 factories and 111 unexposed controls. Individual exposure was assessed by personal air-samplers. Each participant enrolled in the study filled out a questionnaire and provided a urinary sample to quantify OS biomarkers, namely 15-F2t-IsoProstane (15-F2t-IsoP) and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dGuo). The main confounding factor for OS, i.e. tobacco smoking exposure, was assessed by measuring cotinine in urine samples. RESULTS: Woodworkers were exposed to significantly higher amounts of WD and FA as compared to controls (p < 0.001). Among OS biomarkers, 15-F2t-IsoP showed statistically significant higher values in woodworkers compared to controls (p = 0.004). A significant, positive correlation was observed between 15-F2t-IsoP and 8-oxo-dGuo (p = 0.005), cotinine (p = 0.05), FA (p < 0.001) and WD (p = 0.01); 8-oxo-dGuo was significantly correlated with cotinine (p = 0.001) and WD (p = 0.004). In addition, WD and FA were significantly correlated each other (p < 0.001). CONCLUSIONS: The study confirms that WD and FA may induce OS in woodworkers, and highlights that even the compliance with occupational exposure limits can result in measurable biological outcomes.

13.
Front Chem ; 9: 784123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047479

RESUMO

Indocyanine green (ICG) is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, the molecule is prone to form aggregates in saline solution with a limited photostability and a moderate fluorescence yield. ICG was thus formulated using protein-based nanoparticles of H-ferritin (HFn) in order to generate a new nanostructure, HFn-ICG. In this study, an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) system was employed to develop and validate the quantitative analysis of ICG in liver tissue samples from HFn-ICG-treated mice. To precipitate HFn, cold acetone in acidic solution at pH 5.0 was used. The processed liver samples were injected into the UHPLC-MS/MS system for analysis using the positive electrospray ionization mode. Chromatographic separation was achieved on a Waters Acquity UPLC® HSS T3 Column (1.8 µm, 2.1 × 100 mm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. The selected reaction monitoring transitions of   m / z 753 → m / z 330 and m / z 827 → m / z 330 were applied for ICG and IR-820 (the internal standard, IS), respectively. The method was selective and linear over a concentration range of 50-1,500 ng/ml. The method was validated for sensitivity, accuracy, precision, extraction recovery, matrix effect, and stability in liver tissue homogenates. ICG extraction recoveries ranged between 85 and 108%. The intra- and inter-day precisions were less than 6.28%. The method was applied to a bio-distribution study to compare the amount of ICG levels from mice treated with HFn-ICG and free ICG. The analyses of the homogenate samples from the two types of treatment showed that the concentration levels of ICG is approximately six-fold higher than those of free ICG (1,411 ± 7.62 ng/ml vs. 235 ± 26.0 ng/ml) at 2 h post injection.

14.
J Pharm Biomed Anal ; 191: 113644, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32987250

RESUMO

Everolimus (Eve) is an immunosuppressive macrolide that is being analyzed in various biological matrices and fluids. Its antitumor activity makes this drug suitable not only for organ transplantation but also for breast cancer treatments. In the attempt to reduce the incidence and severity of its side effects, Eve was loaded in H-ferritin (HFn), a natural biomolecule that is involved in specific cellular uptake pathways. Thus, Eve pre-complexed with Cu(II) and encapsulated in HFn resulted in an Eve nanoformulation, named HEve. The quantification of HEve was performed using a tailored pH-induced procedure to precipitate H-ferritin. This sample preparation was effective enough to reduce the ion suppression effect on the mass spectrometric responses of Eve in electrospray ionization (ESI). The ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-ESI-MS/MS) system operating in positive ionization mode showed to be a versatile technique in achieving more than 77 % recovery of Eve from the cytoplasmic compartment. This simple, selective and sensitive method enabled the quantification of Eve within the linear range of 2.5-100 ng/mL in matrix spiked with the isotope-labeled internal standard, EveD4. This method was validated according to FDA Guidance. The intracellular distribution of HEve and its accumulation at a cytoplasmic level were studied in breast cancer cell lines. As expected, HEve was more effective than free Eve on sensitive (i.e. BT474) and resistant cell lines, as a result of a better penetration into the target subcellular compartment.


Assuntos
Everolimo , Espectrometria de Massas em Tandem , Apoferritinas , Cromatografia Líquida de Alta Pressão , Imunossupressores , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray
15.
Nat Genet ; 52(5): 473-481, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32367058

RESUMO

Here we report biallelic mutations in the sorbitol dehydrogenase gene (SORD) as the most frequent recessive form of hereditary neuropathy. We identified 45 individuals from 38 families across multiple ancestries carrying the nonsense c.757delG (p.Ala253GlnfsTer27) variant in SORD, in either a homozygous or compound heterozygous state. SORD is an enzyme that converts sorbitol into fructose in the two-step polyol pathway previously implicated in diabetic neuropathy. In patient-derived fibroblasts, we found a complete loss of SORD protein and increased intracellular sorbitol. Furthermore, the serum fasting sorbitol levels in patients were dramatically increased. In Drosophila, loss of SORD orthologs caused synaptic degeneration and progressive motor impairment. Reducing the polyol influx by treatment with aldose reductase inhibitors normalized intracellular sorbitol levels in patient-derived fibroblasts and in Drosophila, and also dramatically ameliorated motor and eye phenotypes. Together, these findings establish a novel and potentially treatable cause of neuropathy and may contribute to a better understanding of the pathophysiology of diabetes.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32143339

RESUMO

Personal air formaldehyde (air-FA) was measured as risk factor of airways inflammation and oxidative stress (SO) induction. Overall, 154 police officers were enrolled from two differently urbanised Italian cities, Turin and Pavia. Urinary F2t-isoprostane (15-F2t-IsoP), a prostaglandin-like compound, was quantified as a biomarker of general OS in vivo and fractional exhaled nitric oxide (FeNO) was measured for monitoring local inflammatory processes. Urinary cotinine was quantified as a biomarker of tobacco smoking exposure. Traffic police officers living in Turin showed an increased level of log air-FA (p < 0.001), equal to +53.6% (p < 0.001). Log air-(FA) mean values were 3.38 (C.I. 95% 3.33-3.43) and 2.84 (C.I. 95% 2.77-2.92) in Turin and Pavia, respectively. Log (air-FA) was higher in "outdoor workers" (3.18, C.I. 95% 3.13-3.24, p = 0.035) compared to "indoor workers", showing an increase of +9.3%, even controlling for sex and city. The analyses on 15-F2t-IsoP and FeNO, both adjusted for log air-FA, highlighted that OS and inflammation were higher (+66.8%, p < 0.001 and +75%, p < 0.001, respectively) in Turin traffic police officers compared to those from Pavia. Our findings suggest that even low exposures to traffic-related emissions and urbanisation may influence both general oxidative stress levels and local inflammation.


Assuntos
Formaldeído , Óxido Nítrico , Exposição Ocupacional , Estresse Oxidativo , Polícia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Testes Respiratórios , Cidades/estatística & dados numéricos , Cotinina/urina , Dinoprosta/análogos & derivados , Dinoprosta/urina , Feminino , Formaldeído/toxicidade , Humanos , Itália , Masculino , Óxido Nítrico/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/estatística & dados numéricos , Estresse Oxidativo/efeitos dos fármacos , Polícia/estatística & dados numéricos
18.
Artigo em Inglês | MEDLINE | ID: mdl-31652605

RESUMO

Risk monitoring in childhood is useful to estimate harmful health effects at later stages of life. Thus, here we have assessed the effects of tobacco smoke exposure and environmental pollution on the respiratory health of Italian children and adolescents using spirometry and the forced oscillation technique (FOT). For this purpose, we recruited 188 students aged 6-19 years living in Chivasso, Italy, and collected from them the following data: (1) one filled out questionnaire; (2) two respiratory measurements (i.e., spirometry and FOT); and (3) two urine tests for Cotinine (Cot) and 15-F2t-Isoprostane (15-F2t-IsoP) levels. We found a V-shape distribution for both Cotinine and 15-F2t-IsoP values, according to age groups, as well as a direct correlation (p = 0.000) between Cotinine and tobacco smoke exposure. These models demonstrate that tobacco smoke exposure, traffic, and the living environment play a fundamental role in the modulation of asthma-like symptoms (p = 0.020) and respiratory function (p = 0.007). Furthermore, the results from the 11-15-year group indicate that the growth process is a protective factor against the risk of respiratory disease later in life. Lastly, the FOT findings highlight the detrimental effects of tobacco smoke exposure and urbanization and traffic on respiratory health and asthma-like symptoms, respectively. Overall, monitoring environmental and behavioral factors in childhood can provide valuable information for preventing respiratory diseases in adulthood.


Assuntos
Exposição Ambiental , Doenças Respiratórias/epidemiologia , Poluição por Fumaça de Tabaco , Emissões de Veículos , Adolescente , Adulto , Criança , Cotinina/urina , Feminino , Humanos , Itália/epidemiologia , Masculino , Doenças Respiratórias/fisiopatologia , Doenças Respiratórias/urina , Fatores de Risco , Espirometria , Inquéritos e Questionários , Urbanização , Adulto Jovem
19.
Pharmaceutics ; 11(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382388

RESUMO

Everolimus (Eve) is an FDA approved drug that inhibits mammalian target of rapamycin (mTOR). It is employed in breast cancer treatment even if its responsiveness is controversial. In an attempt to increase Eve effectiveness, we have developed a novel Eve nanoformulation exploiting H-ferritin nanocages (HEve) to improve its subcellular delivery. We took advantage of the natural tumor targeting of H-Ferritin, which is mediated by the transferrin receptor-1 (TfR1). Breast cancer cells overexpressing TfR-1 were successfully recognized by H-Ferritin, displaying quick nanocage internalization. HEve has been tested and compared to Eve for in vitro efficacy in sensitive and resistant breast cancer cells. Nanoformulated Eve induced remarkable antiproliferative activity in vitro, making even resistant cell lines sensitive to Eve. Moreover, the antiproliferative activity of HEve is fully in accordance with cytotoxicity observed by cell death assay. Furthermore, the significant increase in anticancer efficacy displayed in HEve-treated samples is due to the improved drug accumulation, as demonstrated by UHPLC-MS/MS quantifications. Our findings suggest that optimizing Eve subcellular delivery, thanks to nanoformulation, determines its improved antitumor activity in a panel of Eve-sensitive or resistant breast cancer cell lines.

20.
Pharmaceutics ; 11(6)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31213025

RESUMO

The aim of this work was to load an anticancer drug, paclitaxel (PTX), on Silk Fibroin Nanoparticles (SFNs) by using an exogenous approach. SFNs were produced, freeze-dried and then loaded with PTX. An exogenous method allowed us to reduce both drug loss and environmental impact. In order to quantify PTX loaded in SFNs, a simple and reliable method using reversed phase liquid chromatography coupled to tandem mass spectrometry (rp-UHPLC-MS/MS) was developed. This methodology was validated by the determination of spiked QC samples in three consecutive days. Good accuracy and precision of the method were obtained, while the intra-day and inter-day precisions were less than 10.3%. For PTX, the limit of quantitation (LOQ) was 5.0 ng/mL. Recovery from the matrix (SFNs-PTX pellets) was calculated (81.2% at LOQ value) as PTX was entrapped in a new matrix like the polymer silk fibroin-based. This method was successfully applied to determine the encapsulation efficiency (1.00 ± 0.19%) and the nanoparticle loading (0.12 ± 0.02% w/w). The in vitro anticancer activity of SFNs-PTX was tested against CFPAC-1 cancer cells; results demonstrated a very high cytotoxic activity of SFNs-PTX, with a dose dependent inhibition of CFPAC-1 proliferation, confirmed by the IC50 value of 3450 ± 750 ng/mL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA