Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542963

RESUMO

Pepsin, trypsin and proteinase K were used in the present study to hydrolyse the proteins from whole eggs, yolks or whites, and the resulting hydrolysates were characterised in terms of antioxidant and IgE-binding properties, using a combination of in vitro and in silico methods. Based on the degree of hydrolysis (DH) results, the egg yolk proteins are better substrates for all the tested enzymes (DH of 6.2-20.1%) compared to those from egg whites (DH of 2.0-4.4%). The SDS-PAGE analysis indicated that pepsin and proteinase K were more efficient compared to trypsin in breaking the intramolecular peptide bonds of the high molecular weight egg proteins. For all the tested substrates, enzyme-assisted hydrolysis resulted in a significant increase in antioxidant activity, suggesting that many bioactive peptides are encrypted in inactive forms in the parent proteins. The hydrolysates obtained with proteinase K exhibited the highest DPPH radical scavenging activity (124-311 µM Trolox/g protein) and the lowest residual IgE-binding capacity. The bioinformatics tools revealed that proteinase K is able to break the integrity of the main linear IgE-binding epitopes from ovalbumin and ovomucoid. It can be concluded that proteinase K is a promising tool for modulating the intrinsic properties of egg proteins.


Assuntos
Antioxidantes , Pepsina A , Antioxidantes/química , Tripsina , Endopeptidase K , Peptídeos/química , Proteínas do Ovo/química , Hidrólise , Imunoglobulina E , Hidrolisados de Proteína/química
2.
Foods ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38472848

RESUMO

Listeria monocytogenes is a foodborne pathogen that causes listeriosis, a group of human illnesses that appear more frequently in countries with better-developed food supply systems. This review discusses the efficacy of actual biocontrol methods combined with the main types of food involved in illnesses. Comments on bacteriophages, lactic acid bacteria, bacteriocins, essential oils, and endolysins and derivatives, as main biological antilisterial agents, are made bearing in mind that, using them, food processors can intervene to protect consumers. Both commercially available antilisterial products and solutions presented in scientific papers for mitigating the risk of contamination are emphasized. Potential combinations between different types of antilisterial agents are highlighted for their synergic effects (bacteriocins and essential oils, phages and bacteriocins, lactic acid bacteria with natural or synthetic preservatives, etc.). The possibility to use various antilisterial biological agents in active packaging is also presented to reveal the diversity of means that food processors may adopt to assure the safety of their products. Integrating biocontrol solutions into food processing practices can proactively prevent outbreaks and reduce the occurrences of L. monocytogenes-related illnesses.

3.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398667

RESUMO

The primary goal of this study was to generate different kinds of functional products based on carrots that were supplemented with lactic acid bacteria. The fact that carrots (Daucus carota sp.) rank among the most popular vegetables in our country led to the convergence of the research aim. Their abundance of bioactive compounds, primarily polyphenols, flavonoids, and carotenoids, offers numerous health benefits. Among the obtained products, the freeze-dried carrot powder (FDCP) variation presented the highest concentrations of total carotenoids (TCs) and ß-carotene (BC) of 26.977 ± 0.13 mg/g DW and 22.075 ± 0.14 mg/g DW, respectively. The amount of total carotenoids and ß-carotene significantly increased with the addition of the selected lactic acid bacteria (LAB) for most of the samples. In addition, a slight increase in the antioxidant activity compared with the control sample for the FDCP variant, with the highest value of 91.74%, was observed in these functional food products. The content of polyphenolic compounds varied from 0.044 to 0.091 mg/g DW, while the content of total flavonoids varied from 0.03 to 0.66 mg/g DW. The processing method had an impact on the population of L. plantarum that survived, as indicated by the viability of bacterial cells in all the analyzed products. The chromatographic analysis through UHPLC-MS/MS further confirmed the abundance of the bioactive compounds and their corresponding derivatives by revealing 19 different compounds. The digestibility study indicated that carotenoid compounds from carrots followed a rather controlled release. The carrot-based products enriched with Lactobacillus plantarum can be considered newly functional developed products based on their high content of biologically active compounds with beneficial effects upon the human body. Furthermore, these types of products could represent innovative products for every related industry such as the food, pharmaceutical, and cosmeceutical industries, thus converging a new strategy to improve the health of consumers or patients.


Assuntos
Daucus carota , Lactobacillus plantarum , Humanos , beta Caroteno/análise , Daucus carota/química , Espectrometria de Massas em Tandem , Carotenoides/análise , Flavonoides
4.
Carbohydr Res ; 534: 108964, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925873

RESUMO

Chitosan derivatives are versatile materials, biocompatible and biodegradable, that can be tailor-made to suit specific biomedical applications. In this study, two N-heterocyclic salts (N,N'-diphenacyl-[4,4'-dipyridinium] dibromide (DP) and N,N'-diphenacyl-1,2-bis-(4-pyridinium)ethane dibromide (DPE)) were used for chitosan functionalization to enhance its antimicrobial potential. Physico-chemical characterization of the newly synthesized derivatives (Ch-DP and Ch-DPE) was performed by elemental analysis, spectrometry (UV-Vis, FTIR), electrochemistry (OCP, CV), and electron microscopy (SEM) proving that the highest degree of functionalization was obtained for Ch-DP. The antimicrobial effect of chitosan functionalization was further tested in terms of its interaction with Listeria monocytogenes Scott A, and Staphylococcus aureus ATCC 25923, as Gram-positive bacteria and Escherichia coli ATCC 25922, as Gram-negative bacterium, respectively, showing that the Ch-DP had a good inhibitory activity compared with Ch-DPE.


Assuntos
Anti-Infecciosos , Quitosana , Antibacterianos/química , Quitosana/farmacologia , Quitosana/química , Sais/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/química , Escherichia coli
5.
Foods ; 12(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37444320

RESUMO

Wild artisanal cultures, such as a symbiotic culture of bacteria and yeasts (SCOBY) and water kefir grains (WKG), represent a complex microorganism consortia that is composed of yeasts and lactic and acetic acid bacteria, with large strains of diversity and abundance. The fermented products (FPs) obtained by the microbiome's contribution can be included in functional products due to their meta-biotics (pre-, pro-, post-, and paraprobiotics) as a result of complex and synergistic associations as well as due to the metabolic functionality. In this study, consortia of both SCOBY and WKG were involved in the co-fermentation of a newly formulated substrate that was further analysed, aiming at increasing the postbiotic composition of the FPs. Plackett-Burman (PBD) and Response Surface Methodology (RSM) techniques were employed for the experimental designs to select and optimise several parameters that have an influence on the lyophilised starter cultures of SCOBY and WKG activity as a multiple inoculum. Tea concentration (1-3%), sugar concentration (5-10%), raisins concentration (3-6%), SCOBY lyophilised culture concentration (0.2-0.5%), WKG lyophilised culture concentration (0.2-0.5%), and fermentation time (5-7 days) were considered the independent variables for mathematical analysis and fermentation conditions' optimisation. Antimicrobial activity against Bacillus subtilis MIUG B1, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Aspergillus niger MIUG M5, antioxidant capacity (DPPH), pH and the total acidity (TA) were evaluated as responses. The rich postbiotic bioactive composition of the FP obtained in optimised biotechnological conditions highlighted the usefulness of the artisanal co-cultures, through their symbiotic metabolic interactions for the improvement of bioactive potential.

6.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175173

RESUMO

The functionality of the peptides obtained through enzymatic hydrolysis of spent brewer's yeast was investigated. Hydrolysis was carried out for 4-67 h with bromelain, neutrase and trypsin. The resulting hydrolysates were characterized in terms of physical-chemical, antioxidant and techno-functional properties. The solid residues and soluble protein contents increased with the hydrolysis time, the highest values being measured in samples hydrolyzed with neutrase. Regardless of the hydrolysis time, the maximum degree of hydrolysis was measured in the sample hydrolyzed with neutrase, while the lowest was in the sample hydrolyzed with trypsin. The protein hydrolysate obtained with neutrase exhibited the highest DPPH radical scavenging activity (116.9 ± 2.9 µM TE/g dw), followed by the sample hydrolyzed with trypsin (102.8 ± 2.7 µM TE/g dw). Upon ultrafiltration, the fraction of low molecular weight peptides (<3 kDa) released by bromelain presented the highest antioxidant activity (50.06 ± 0.39 µM TE/g dw). The enzymes influenced the foaming properties and the emulsions-forming ability of the hydrolysates. The trypsin ensured the obtaining of proteins hydrolysate with the highest foam overrun and stability. The emulsions based on hydrolysates obtained with neutrase exhibited the highest viscosity at a shear rate over 10 s-1. These results indicate that the investigated proteases are suitable for modulating the overall functionality of the yeast proteins.


Assuntos
Antioxidantes , Peptídeo Hidrolases , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peptídeo Hidrolases/química , Bromelaínas , Saccharomyces cerevisiae/metabolismo , Tripsina/metabolismo , Proteínas/metabolismo , Peptídeos/química , Hidrólise , Hidrolisados de Proteína/química
7.
J Food Prot ; 86(1): 100026, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916585

RESUMO

This study assessed the growth of Listeria monocytogenes in ready-to-eat (RTE) ham during storage under conditions simulating domestic practices with the intention to offer support in the elaboration of food safety policies that should better protect consumers against food poisoning at home. RTE ham, artificially contaminated at either medium (102-103 CFU/g) or high (104-105 CFU/g) concentration, was stored at both isothermal (4℃ in a refrigerator able to maintain a relatively constant temperature and 5℃ and 7℃ in a refrigerator with fluctuating temperature) and dynamic (5℃ and 7℃ with intermittent exposure to ambient temperature, e.g. 25℃) conditions. Under isothermal conditions, the increasing storage temperature determined a significantly increased (p < 0.05) capacity of L. monocytogenes to grow. The kinetic growth parameters were derived by fitting the Baranyi and Roberts model to the experimental data and, based on the maximum specific growth rates, it was estimated the temperature dependence of L. monocytogenes growth in RTE ham. At medium contamination level, sanitary risk time calculation revealed that, unlike storage at 5℃ and 7℃, storage at 4℃ of the RTE ham extends the time period during which the product is safe for consumption by ∼40 and 52%, respectively. However, the real temperature fluctuations included in the Monte Carlo simulations at low L. monocytogenes counts (1, 5 and 10 CFU/g) have shortened the safety margins. Stochastic models also proved to be useful tools for describing the pathogen's behavior when refrigeration of the RTE ham alternates with periods of ham being kept at room temperature, considered dynamic conditions of growth.


Assuntos
Listeria monocytogenes , Produtos da Carne , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Método de Monte Carlo , Temperatura , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor
8.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959618

RESUMO

In this study, high-value, carotenoid-rich oleoresin obtained by supercritical carbon dioxide (SFE-CO2) extraction was used to develop five variants of microencapsulated delivery system, based on whey proteins isolate (WPI), in combination with inulin (I), pectin (P) or lactose (L). The WPI:I and WPI:L variants were also obtained by conjugation via Maillard reaction. The microencapsulation of the SFE-CO2 sea buckthorn pomace oleoresin was performed by emulsion, complex coacervation and freeze-drying, which allowed for the obtaining of five powders, with different phytochemicals profile. The WPI:I conjugate showed the highest level of total carotenoids, whereas the counterpart WPI:L showed the highest content in linoleic acid (46 ± 1 mg/g) and palmitoleic acid (20.0 ± 0.5 mg/g). The ß-tocopherol and ß-sitosterol were identified in all variants, with the highest content in the conjugated WPI:L variant. Both WPI:L and WPI:I conjugate samples presented similar IC50 value for inhibitory activity against pancreatic lipase and α-amylase; the highest activity was observed for the conjugated WPI:I. The WPI:P combination allowed the highest release of carotenoids in the gastro-intestinal environment. All the powders exhibited poor flowing properties, whereas water activity (aw) ranged from 0.084 ± 0.03 to 0.241 ± 0.003, suggesting that all variants are stable during storage. In case of solubility, significant differences were noticed between non-heated and glycated samples, with the highest value for the WPI:I and the lowest for glycated WPI:I. The structural analysis revealed the presence of finer spherosomes in WPI:I and WPI:L, with a reduced clustering capacity, whereas the particles in the conjugated samples were more uniform and aggregated into a three-dimensional network.

9.
Antioxidants (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34829552

RESUMO

The processing of sea buckthorn generates a significant amount of pomace, seeds and skin considered valuable sources of health-promoting macromolecules, such as carotenoids, pectin, flavonoids, phytosterols, polyunsaturated fatty acids and tocopherols. In this study, the bioactives from sea buckthorn pomace (SBP) were extracted using supercritical carbon dioxide (SFE-CO2), at different temperatures and pressures, allowing for obtaining four fractions according to separators (S40 and S45). The highest carotenoid content of 396.12 ± 1.02 mg/g D.W. was found in the S40 fraction, at extraction parameters of 35 °C/45 MPa, yielding an antioxidant activity of 32.10 ± 0.17 mMol TEAC/g D.W. The representative carotenoids in the extract were zeaxanthin, ß-carotene and lycopene, whereas all enriched SFE-CO2 extracts contained α-, ß- and δ-tocopherol, with α-tocopherol representing around 82% of all fractions. ß-sitosterol was the major phytosterol in the fractions derived from S45. All fractions contained significant fatty acids, with a predominance of linoleic acid. Remarkably, the enriched extracts showed a significant palmitoleic acid content, ranging from 53 to 65 µg/g. S40 extracts showed a good antibacterial activity against Staphylococcus aureus and Aeromonas hydrophila ATCC 7966, whereas S45 extracts showed a growth inhibition rate of 100% against Aspergillus niger after three days of growth. Our results are valuable, and they allow identifying the different profiles of extracts with many different applications in food, pharmaceutics, nutraceuticals and cosmeceuticals.

10.
BMC Genomics ; 22(1): 266, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853520

RESUMO

BACKGROUND: The pathogen Listeria (L.) monocytogenes is known to survive heat, cold, high pressure, and other extreme conditions. Although the response of this pathogen to pH, osmotic, temperature, and oxidative stress has been studied extensively, its reaction to the stress produced by high pressure processing HPP (which is a preservation method in the food industry), and the activated gene regulatory network (GRN) in response to this stress is still largely unknown. RESULTS: We used RNA sequencing transcriptome data of L. monocytogenes (ScottA) treated at 400 MPa and 8∘C, for 8 min and combined it with current information in the literature to create a transcriptional regulation database, depicting the relationship between transcription factors (TFs) and their target genes (TGs) in L. monocytogenes. We then applied network component analysis (NCA), a matrix decomposition method, to reconstruct the activities of the TFs over time. According to our findings, L. monocytogenes responded to the stress applied during HPP by three statistically different gene regulation modes: survival mode during the first 10 min post-treatment, repair mode during 1 h post-treatment, and re-growth mode beyond 6 h after HPP. We identified the TFs and their TGs that were responsible for each of the modes. We developed a plausible model that could explain the regulatory mechanism that L. monocytogenes activated through the well-studied CIRCE operon via the regulator HrcA during the survival mode. CONCLUSIONS: Our findings suggest that the timely activation of TFs associated with an immediate stress response, followed by the expression of genes for repair purposes, and then re-growth and metabolism, could be a strategy of L. monocytogenes to survive and recover extreme HPP conditions. We believe that our results give a better understanding of L. monocytogenes behavior after exposure to high pressure that may lead to the design of a specific knock-out process to target the genes or mechanisms. The results can help the food industry select appropriate HPP conditions to prevent L. monocytogenes recovery during food storage.


Assuntos
Listeria monocytogenes , Listeria , Manipulação de Alimentos , Microbiologia de Alimentos , Armazenamento de Alimentos , Listeria monocytogenes/genética
11.
BMC Res Notes ; 14(1): 137, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858503

RESUMO

OBJECTIVES: The study aims to generate the whole genome sequence of L. monocytogenes strain S2542 and to compare it to the genomes of strains RO15 and ScottA. In addition, we aimed to compare gene expression profiles of L. monocytogenes strains S2542, ScottA and RO15 after high-pressure processing (HPP) using ddPCR. RESULTS: The whole genome sequence of L. monocytogenes S2542 indicates that this strain belongs to serotype 4b, in contrast to the previously reported serotype 1/2a. Strain S2542 appears to be more susceptible to the treatment at 400 MPa compared to RO15 and ScottA strains. In contrast to RO15 and ScottA strains, viable cell counts of strain S2542 were below the limit of detection after HPP (400 MPa/8 min) when stored at 8 °C for 24 and 48 h. The transcriptional response of all three strains to HPP was not significantly different.


Assuntos
Listeria monocytogenes , Microbiologia de Alimentos , Técnicas Genéticas , Listeria monocytogenes/genética
12.
BMC Genomics ; 22(1): 117, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579201

RESUMO

BACKGROUND: High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). RESULTS: The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. CONCLUSIONS: We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.


Assuntos
Listeria monocytogenes , Microbiologia de Alimentos , Indústria de Processamento de Alimentos , Listeria monocytogenes/genética , Temperatura , Transcriptoma
13.
Biomolecules ; 10(10)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036339

RESUMO

This study focuses on combining different bioprocessing tools in order to develop an in-depth engineering approach for enhancing the biological properties of two valuable food by-products, namely fish waste and yellow onion skins, in a single new bioactive formulation. Bone tissue from phytophagous carp (Hypophthalmichthys molitrix) was used to obtain bioactive peptides through papain-assisted hydrolysis. The peptides with molecular weight lower than 3 kDa were characterized through MALDI-ToF/ToF mass spectrometry and bioinformatics tools. As a prerequisite for microencapsulation, the ability of these peptides to bind the flavonoids extracted from yellow onion skins was further tested through fluorescence quenching measurements. The results obtained demonstrate a considerable binding potency with a binding value of 106 and also the presence of one single or one class of binding site during the interaction process of flavonoids with peptides, in which the main forces involved are hydrogen bonds and van der Waals interactions. In the freeze-drying microencapsulation process, an efficiency for total flavonoids of 88.68 ± 2.37% was obtained, considering the total flavonoids and total polyphenols from the powder of 75.72 ± 2.58 quercetin equivalents/g dry weight (DW) and 97.32 ± 2.80 gallic acid equivalents/g DW, respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test on the L929 cell line cultivated in the presence of different concentrations of microencapsulated samples (0.05-1.5 mg/mL) proved no sign of cytotoxicity, the cell viability being over 80% for all the samples.


Assuntos
Carpas , Proteínas de Peixes/química , Flavonoides/química , Cebolas/química , Peptídeos/química , Extratos Vegetais/química , Hidrolisados de Proteína/química , Animais , Hidrólise
14.
Food Chem ; 318: 126508, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32146312

RESUMO

This work was aimed to obtain lactoferrin peptides, with anthocyanins-binding capabilities, by using eggplant peels extract as a source of anthocyanins. The chromatographic analysis of the extract evidenced the presence of five individual anthocyanins, with delfinidin-3-rutinoside being identified as the predominant. 20 small peptides were identified, from which four are containing Trp at C-terminal. By estimating the thermodynamic parameters, van der Waals and hydrogen bonding were found to have important roles in binding of anthocyanins to LF and LF-derived peptides. In order to complement the experimental results, the in silico methods were further employed to add single molecule level details on the potential interactions between different peptides and the main anthocyanins from eggplant peels. The docking tests indicated that the Trp containing peptides can bind, with different affinities either delphynidine-3-glycoside or delphynidine-3-rutinoside, therefore explaining the fluorescence quenching results. Our results have indicated a mechanism for the interactions between anthocyanins and LF and its small molecular weight peptides, whereas providing insights for formulating ingredients and foods with enhanced bioactives-binding properties.


Assuntos
Antocianinas/química , Lactoferrina/química , Peptídeos/química , Extratos Vegetais/química , Solanum melongena/química , Animais , Bovinos , Fluorescência , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência/métodos , Termodinâmica
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 231: 118114, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32014659

RESUMO

The interaction between preheated soy proteins and anthocyanins from cornelian cherries was evaluated using a spectroscopic approach and molecular modeling. Structural changes of glycinin, ß-conglycinin and soy protein isolate were investigated based on spectra of native and heat treated proteins in the presence of anthocyanins rich extracts from fresh cornelian cherry fruits. The fluorescence maximum emission in the presence of anthocyanins showed significant red shifts when compared with individual proteins, indicating the change of polarity in the surroundings of Trp residues from soy proteins toward more hydrophilic, which were attributed to protein-polyphenols interactions. Soy proteins interacted with cornelian cherries anthocyanins mainly through a static quenching mechanism. Glycinin presented a better affinity toward anthocyanins as revealed by the binding constant. The in silico approach was further employed to provide single molecule level details on the interaction between the main soy proteins and anthocyanins prevailing in cornelian cherry extracts. The docking results are consistent with the fluorescence spectroscopy data indicating better affinity of glycinin for cyanidin 3-glucoside and cyanidin 3-rutinoside, compared to the ß-conglycinin. These findings deliver important insights for efficient development of microencapsulated powders based on soy proteins and anthocyanins from cornelian cherries, from the perspectives of obtaining value-added ingredients.


Assuntos
Antocianinas/química , Cornus/química , Frutas/química , Proteínas de Soja/química , Antígenos de Plantas/química , Globulinas/química , Glucosídeos/química , Temperatura Alta , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas de Armazenamento de Sementes/química , Glycine max/química
16.
Foods ; 8(4)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003565

RESUMO

The aim of this work was to advance knowledge on the potential use of black rice different sieving fractions for various functional applications, through proximate analysis, thermal degradation kinetics of phytochemical and characterization of the thermal behavior of the main proteins, from the perspectives of their use as a food ingredient. The results indicated that the thermal degradation of phytochemicals followed a first-order reaction kinetics for all the tested fractions. The temperature-dependent degradation was adequately modeled according to the Arrhenius equation. The calculated activation energies (Ea) and k values were different among the four studied parameters. The kinetic parameters depended on the grinding and sieving degree, the anthocyanins being the most thermolabile compounds, thus affecting the antioxidant activity. Three protein fractions were identified by electrophoresis with different molecular weight, such as albumin, globulin, and glutelin. The fluorescence spectroscopy experiments revealed the sequential character of the heat-induced conformational changes, different molecular events being suggested, such as folding in the lower temperature range and unfolding at higher temperature. The significance of the study is evidenced by the need to identify and advance the process-structure-function relationships for various biologically active compounds from the perspective of obtaining food or ingredients nutritionally optimized.

17.
Microbiologyopen ; 8(9): e00826, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30843349

RESUMO

Listeria monocytogenes is a food-borne human pathogen and a serious concern in food production and preservation. Previous studies have shown that biofilm formation of L. monocytogenes and presence of extracellular DNA (eDNA) in the biofilm matrix varies with environmental conditions and may involve agr peptide sensing. Experiments in normal and diluted (hypoosmotic) complex media at different temperatures revealed reduced biofilm formation of L. monocytogenes EGD-e ΔagrD, a mutant deficient in agr peptide sensing, specifically in diluted Brain Heart Infusion at 25°C. This defect was not related to reduced sensitivity to DNase treatment suggesting sufficient levels of eDNA. Re-analysis of a previously published transcriptional profiling indicated that a total of 132 stress-related genes, that is 78.6% of the SigB-dependent stress regulon, are differentially expressed in the ΔagrD mutant. Additionally, a number of genes involved in flagellar motility and a large number of other surface proteins including internalins, peptidoglycan binding and cell wall modifying proteins showed agr-dependent gene expression. However, survival of the ΔagrD mutant in hypoosmotic conditions or following exposure to high hydrostatic pressure was comparable to the wild type. Also, flagellar motility and surface hydrophobicity were not affected. However, the ΔagrD mutant displayed a significantly reduced viability upon challenge with lysozyme. These results suggest that the biofilm phenotype of the ΔagrD mutant is not a consequence of reduced resistance to hypoosmotic or high pressure stress, motility or surface hydrophobicity. Instead, agr peptide sensing seems to be required for proper regulation of biosynthesis, structure and function of the cell envelope, adhesion to the substratum, and/or interaction of bacteria within a biofilm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Listeria monocytogenes/crescimento & desenvolvimento , Fenótipo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Deleção de Genes , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Listeria monocytogenes/genética , Temperatura
18.
Front Microbiol ; 9: 2700, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555426

RESUMO

Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA