Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dent J (Basel) ; 12(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38534271

RESUMO

The materials used in dentistry for the fabrication of all-ceramic restorations have undergone great and rapid developments over the last two decades. Among the most common ceramic materials in dentistry are those based on zirconium and lithium disilicate. Due to the properties of these materials, they are in great demand in the field of dental restoration production. Thus, dental restorations that will use those materials are commonly machined in CAD/CAM systems, which offer the possibility of manufacturing all-ceramic dental restorations in a very short period of time. This article reviews the modern materials in the field of all-ceramic dental restorations, their manufacturing processes, as well as what determines which ceramic materials are used for the production of CAD/CAM blanks and their production technology.

2.
Antibiotics (Basel) ; 13(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391561

RESUMO

The surface adhesion of bacterial cells and the in vivo biocompatibility of a new ceramic-metal composite made of zirconium dioxide and tantalum were evaluated. Within the framework of an in vitro study using the crystal violet staining and colony counting methods, a relatively similar adhesion of Streptococcus oralis to the 3Y-TZP/Ta biocermet (roughness Ra = 0.12 ± 0.04 µm) and Ti-Al6-V4 titanium alloy (Ra = 0.04 ± 0.01 µm) was found. In addition, in an in vivo preliminary study focused on the histological analysis of a series of rods implanted in the jaws of beagle dogs for a six-month period, the absence of any fibrous tissue or inflammatory reaction at the interface between the implanted 3Y-TZP/Ta biocermets and the new bone was found. Thus, it can be concluded that the developed ceramic-metal biocomposite may be a promising new material for use in dentistry.

3.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068070

RESUMO

Statistical analysis of mechanical properties of thin-walled samples (~500 microns) obtained by selective laser melting from AlSi10Mg material and subjected to heat treatment for 1 h at temperatures from 260 °C to 440 °C (step of aging temperature change 30 °C) has shown that the maximum strain hardening in the stretching diagram section from yield strength to tensile strength is achieved at the heat treatment temperature equal to 290 °C. At carrying out of correlation analysis, a statistically significant positive correlation between deformation corresponding to yield strength and the sum of heights of the largest protrusions and depths of the largest depressions of the surface roughness profile within the basic length of the sample (Rz) and the full height of the surface roughness profile (Rmax) was established. It was found that the reason for the correlation is the presence of cohesive states between the extreme values of the surface roughness profile that persist along the entire length of the specimen.

4.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068127

RESUMO

The development of dental implantology is based on the detailed study of the interaction of implants with the surrounding tissues and methods of osteogenesis stimulation around implants, which has been confirmed by the increasing number of scientific publications presenting the results of studies related to both the influence of the chemical composition of dental implant material as well as the method of its surface modification on the key operational characteristics of implants. The main materials for dental implant manufacturing are Ti and its alloys, stainless steels, Zr alloys (including ceramics based on ZrO2), and Ta and its alloys, as well as other materials (ceramics based on Al2O3, Si3N4, etc.). The review presents alloy systems recommended for use in clinical practice and describes their physical-mechanical and biochemical properties. However, when getting into the body, the implants are subjected to various kinds of mechanical influences, which are aggravated by the action of an aggressive biological environment (electrolyte with a lot of Cl- and H+); it can lead to the loss of osteointegration and to the appearance of the symptoms of the general intoxication of the organism because of the metal ions released from the implant surface into the biological tissues of the organism. Since the osteointegration and biocompatibility of implants depend primarily on the properties of their surface layer (it is the implant surface that makes contact with the tissues of the body), the surface modification of dental implants plays an important role, and all methods of surface modification can be divided into mechanical, physical, chemical, and biochemical methods (according to the main effect on the surface). This review discusses several techniques for modifying dental implant surfaces and provides evidence for their usefulness.

5.
Membranes (Basel) ; 13(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999371

RESUMO

An electrochemical hydrogen pump (EHP) with a proton exchange membrane (PEM) used as part of fusion cycle systems successfully combines the processes of hydrogen extraction, purification and compression in a single device. This work comprises a novel study of the effect of ionizing radiation on the properties of the PEM as part of the EHP. Radiation exposure leads to nonspecific degradation of membranes, changes in their structure, and destruction of side and matrix chains. The findings from this work reveal that the replacement of sulfate groups in the membrane structure with carboxyl and hydrophilic groups leads to a decrease in conductivity from 0.115 to 0.103 S cm-1, which is reflected in halving the device performance at a temperature of 30 °C. The shift of the ionomer peak of small-angle X-ray scattering curves from 3.1 to 4.4 nm and the absence of changes in the water uptake suggested structural changes in the PEM after the irradiation. Increasing the EHP operating temperature minimized the effect of membrane irradiation on the pump performance, but enhanced membrane drying at low pressure and 50 °C, which caused a current density drop from 0.52 to 0.32 A·cm-2 at 0.5 V.

6.
Sensors (Basel) ; 23(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37837118

RESUMO

The widespread nature of heat-resistant alloys is associated with the difficulties in their mechanical machining. It forces the use of the wire electrical discharge machining to be wider. The productivity, roughness, and dimensions of the modified layer of the machined surfaces are indicators of the machining quality. The search for new diagnostic parameters that can expand the information content of the operational monitoring/diagnostics of wire electrical discharge machining and accompany the currently used electrical parameters' data is an urgent research task. The article presents the studies of the relationship between the parameters of acoustic emission signals accompanying wire electrical discharge machining of heat-resistant alloys, process quality indicators, and characteristics of discharge pulses. The results are presented as mathematical expressions and graphs demonstrating the experimentally obtained dependencies. The research focuses on the formed white layer during wire electrical discharge machining. Pictures of thin cross-sections of the machined surfaces with traces of the modified layer are provided. The issues of crack formation in the modified layer and base materials are considered.

7.
Materials (Basel) ; 16(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687651

RESUMO

There are two main ways of carrying out the electrical discharge machining of the insulating ceramics: changing the electrical and chemical properties of ceramics due to additives in producing composites/nanocomposites and changing the electrical and chemical properties in the interelectrode gap. This review summarizes and analyzes the current data on the machinability in water suspension and hydrocarbons depending on the electrical properties of the ceramic composites and assisting means such as coating and powder. There are provided the existing approaches and original methods for solving the global problem of the electrical discharge machining of insulating ceramics, suggesting further development of the existing methods since, up to now, the experimental research is non-systemic. The dependencies of the machinability on the electrical properties of conductive ceramic composites, the specific electrical resistance of the assisting coating, and the assisting powder's band gap and concentration for machining insulating ceramics are revealed. The higher the electrical conductivity, the higher the machinability of ceramic composites, and the lower the band gap, the higher the machinability for insulating ceramics. Two technological gaps were revealed in the powder's concentration that can be a particular case of logarithmic decrement of attenuation. The proposed approach suggests using assisting powder with the lower band gap.

8.
Gels ; 9(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37754362

RESUMO

Within this work, new aerogels based on graphene oxide are proposed to adsorb salicylic acid (SA) and herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous media. Graphene oxide aerogel (GOA) and reduced graphene oxide aerogel (rGOA) were obtained by freeze-drying processes and then studied by Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. The influence of contact time and the concentration of the adsorbates were also assessed. It was found that equilibrium for high adsorption is reached in 150 min. In a single system, the pseudo-first-order, pseudo-second-order kinetic models, Intraparticle diffusion, and Elovich models were used to discuss the detail of the aerogel adsorbing pollutant. Moreover, the Langmuir, Freundlich, and Temkin adsorption models were applied to describe the equilibrium isotherms and calculate the isotherm constants.

9.
Materials (Basel) ; 16(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629834

RESUMO

The review focuses on the surface modification of Zr and its alloys, which is necessary to expand the applications of these kinds of materials. Data on the properties of pure zirconium and its alloys are presented. Since surface engineering and the operation of the above materials are in most cases associated with the formation of oxide coatings, information on the characteristics of ZrO2 is given. In addition, attention is paid to phasing in the zirconium-oxygen system. It is noted that the most effective method of surface engineering of Zr and its alloys is plasma electrolytic modification (PEM) technology. Specific examples and modes of modification are described, and the reached results are analyzed. The relevance, novelty and originality of the review are determined by the insufficient knowledge about a number of practical features concerning the formation of functional oxide coatings on Zr and some of its alloys by the technology of PEM. In particular, the information on the phase composition and possibilities of stabilization of the tetragonal and cubic modifications of ZrO2, the effects of the component composition of electrolyte solutions and electrolyte suspensions, and the specifics of the treatment of additive shaping and deformed materials are rather contradictory. This review aims to collect recent advances and provide insights into the trends in the modification of Zr and its alloys, promote the formulation of practical recommendations and assess the development prospects.

10.
Materials (Basel) ; 16(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297062

RESUMO

Coatings with a thickness from ~40 to ~50 µm on Ti6Al4V titanium alloys were formed by plasma electrolytic oxidation (PEO) in a silicate-hypophosphite electrolyte with the addition of graphene oxide. The PEO treatment was carried out in the anode-cathode mode (50 Hz) at a ratio of anode and cathode currents of 1:1; their sum density was 20 A/dm2, and the treatment's duration was 30 min. The effect of the graphene oxide's concentration in the electrolyte on the thickness, roughness, hardness, surface morphology, structure, composition, and tribological characteristics of the PEO coatings was studied. Wear experiments, under dry conditions, were carried out in a ball-on-disk tribotester with an applied load of 5 N, a sliding speed of 0.1 m·s-1, and a sliding distance of 1000 m. According to the obtained results, the addition of graphene oxide (GO) into the base silicate-hypophosphite electrolyte leads to a slight decrease in the coefficient of friction (from 0.73 to 0.69) and a reduction in the wear rate by more than 1.5 times (from 8.04 to 5.2 mm3/N·m), with an increase in the GO's concentration from 0 to 0.5 kg/m3, respectively. This occurs due to the formation of a GO-containing lubricating tribolayer upon contact with the coating of the counter-body in the friction pair. Delamination of the coatings during wear occurs due to contact fatigue; with an increase in the concentration of GO in the electrolyte from 0 to 0.5 kg/m3, this process slows down by more than four times.

11.
ACS Appl Mater Interfaces ; 15(25): 30179-30186, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318509

RESUMO

Dopant-free defective carbon electrocatalysts have been considered as promising alternatives to traditional precious metal electrocatalysts recently. Compared with precious metal catalysts and transition-metal catalysts, since there are no metals doped, electrochemical devices assembled with dopant-free defective carbons are free from environmental pollution and subsequent recovery problems. In order to obtain abundant carbon defects with high-intrinsic catalytic activity, the synthesis of dopant-free defective carbons requires complex and harsh preparation conditions. Therefore, the construction of active defects with efficient utilization, especially through a simple process, is still a great challenge for the development of dopant-free defective carbon electrocatalysts. Herein, dissolution-recrystallization strategy was employed to design Zn-MOF-74 precursors for the synthesis of dopant-free defective carbons, realizing the synchronous manipulation of high ratio of carbon defects and highly exposed mass transfer channels. One-dimensional porous defective carbon nanorods (d-CNRs), which exhibited excellent oxygen reduction reaction (ORR), electrocatalytic activity, and molecular selectivity, were synthesized by directly carbonizing rodlike Zn-MOF-74 precursors. Attributed to the dissolution-recrystallization strategy, with the activation of in situ-formed ZnO, the synthesized d-CNRs exhibited unique pore-crack nested porous structures, which carried abundant defects as activity sites for ORR and showed a surprisingly high specific surface area of 2459 m2/g with a high ratio of mesopores. d-CNRs also showed promising applications in Zn-air batteries with a stable long-term discharge of no obvious voltage drop after 60 h. The dissolution-recrystallization strategy provided a simple controllable pathway for the efficient construction of dopant-free defective carbon electrocatalysts.

12.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240043

RESUMO

Industrial wastewater is the main source of an excessive amount of molybdenum (Mo) in natural ecosystems. It is necessary to remove Mo from wastewater before it is discharged into the environment. Molybdate ion(VI) is the most common form of Mo in natural reservoirs and industrial wastewater. In this work, the sorption removal of Mo(VI) from an aqueous medium was evaluated using aluminum oxide. The influence of such factors as the pH of the solution and the temperature was evaluated. Three adsorption isotherms, namely, Langmuir, Freundlich and Temkin, were used to describe the experimental results. It was found that the pseudo-first order kinetic model better fits the kinetic data of the adsorption process, and the maximum Mo(VI) adsorption capacity was 31 mg/g at 25 °C and pH 4. The thermodynamic parameters indicated that the process of Mo(VI) adsorption on Al2O3 was exothermic and spontaneous. It was shown that the adsorption of Mo strongly depends on pH. The most effective adsorption was observed at pH values below 7. Experiments on adsorbent regeneration showed that Mo(VI) can be effectively desorbed from the aluminum oxide surface into a phosphate solution in a wide range of pH values. After the desorption of Mo(VI) in a phosphate solution, alumina was found to be suitable for repeating the procedure at least five times.


Assuntos
Molibdênio , Poluentes Químicos da Água , Águas Residuárias , Óxido de Alumínio , Adsorção , Ecossistema , Termodinâmica , Fosfatos , Concentração de Íons de Hidrogênio , Cinética
13.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984419

RESUMO

Nickel alloy high-speed processing technology using ball-end mills is characterized by high contact temperature and leads to accelerated tool wear. One of the effective ways to increase its reliability and service life is to modify the surface by applying functional antifriction layers in addition to wear-resistant coatings. Diamond-like carbon is often used as the latter. However, at cutting speed, when a cutting-edge temperature exceeding 650 °C is reached, the material of this coating reacts actively with oxygen in the air, and the sharply increasing adhesive component of wear quickly incapacitates the milling tooth, limiting its performance. Applying a coating of titanium diboride as an antifriction layer on top of nanocrystalline composite nitride coatings with good resistance to abrasive wear can be a solution to this problem. Our experiments have shown that such technology makes it possible to obtain a twofold increase in durability compared to a tool with a diamond-like antifriction coating in conditions when the cutting edge of the tool is subjected to cyclic thermal shocks above 800 °C, and the durability period of the radius end mill is about 50 min.

14.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679551

RESUMO

Creating systems for monitoring technology processes based on concentrated energy flows is an urgent and challenging task for automated production. Similar processes accompany such processing technologies: intensive thermal energy transfer to the substance, heating, development of the melting and evaporation or sublimation, ionization, and expansion of the released substance. It is accompanied by structural and phase rearrangements, local changes in volumes, chemical reactions that cause perturbations of the elastic medium, and the propagation of longitudinal and transverse waves in a wide frequency range. Vibrational energy propagates through the machine's elastic system, making it possible to register vibrations on surfaces remotely. Vibration parameters can be used in monitoring systems to prevent negative phenomena during processing and to be a tool for understanding the processes' kinetics. In some cases, it is the only source of information about the progress in the processing zone.


Assuntos
Reprodução , Vibração , Cinética
15.
Materials (Basel) ; 15(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499897

RESUMO

This article presents the study of the rheological properties and the printability of produced ceramic-polymer filaments using fused deposition method (FDM) 3D printing technology. Powder mixtures with an alumina content of 50 to 70 vol.% were fabricated by a wet processing route. A series of rheological experiments of the obtained mixtures were conducted in the temperature range from 200 to 220 °C for the commercial polylactide (PLA) powder and from 200 to 240 °C for ceramic-polymer, which corresponds to the recommended temperatures for 3D printing of commercial PLA filaments. The composition with the maximum content of alumina leads to a powdery material in which the molten polymer is insufficient to measure the rheological properties. In spite of this, the filaments were prepared from all the obtained mixtures with a tabletop single-screw extruder, the diameter and surface profile of which were analyzed. As the ceramic content increased, the diameter and surface roughness of the filaments increased. Therefore, it was only possible to print an object from a filament with the lowest ceramic content. However, the print quality of the 3D printed objects from the fabricated ceramic-polymer filament is worse (imperfect form, defects between layers) compared to the commercial PLA filament. To eliminate such defects in the future, it is necessary to conduct additional research on the development of printing modes and possibly modify the software and components of the 3D printer.

16.
Materials (Basel) ; 15(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431540

RESUMO

The main goal of the present work was to synthesize a composite consisting of h-BN particles coated with a γ-Al2O3 nanolayer. A method was proposed for applying nanocrystalline γ-Al2O3 to h-BN particles using a sol-gel technique, which ensures the chemical homogeneity of the composite at the nano level. It has been determined that during crystallization on the h-BN surface, the proportion of spinel in alumina decreases from 40 wt.% in pure γ-Al2O3 to 30 wt.% as a result of the involvement of the B3+ ions from the surface nitride monolayers into the transition complex. For comparison, nano-alumina was synthesized from the same sol under the same conditions as the composite. The characterization of the obtained nanostructured powders was carried out using TEM and XRD. A mechanism is proposed for the formation of a nanostructured γ-Al2O3@h-BN composite during the interaction of Al-containing sol and h-BN suspension in aqueous organic media. The resulting composite is a promising model of powdered raw materials for the development of fine-grained ceramic materials for a wide range of applications.

17.
Materials (Basel) ; 15(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234286

RESUMO

Machining is an indispensable manufacturing process for a wide range of engineering materials, such as metals, ceramics, and composite materials, in which the tool wear is a serious problem, which affects not only the costs and productivity but also the quality of the machined components. Thus, the modification of the cutting tool surface by application of textures on their surfaces is proposed as a very promising method for improving tool life. Surface texturing is a relatively new surface engineering technology, where microscale or nanoscale surface textures are generated on the cutting tool through a variety of techniques in order to improve tribological properties of cutting tool surfaces by reducing the coefficient of friction and increasing wear resistance. In this paper, the studies carried out to date on the texturing of ceramic and superhard cutting tools have been reviewed. Furthermore, the most common methods for creating textures on the surfaces of different materials have been summarized. Moreover, the parameters that are generally used in surface texturing, which should be indicated in all future studies of textured cutting tools in order to have a better understanding of its effects in the cutting process, are described. In addition, this paper proposes a way in which to classify the texture surfaces used in the cutting tools according to their geometric parameters. This paper highlights the effect of ceramic and superhard textured cutting tools in improving the machining performance of difficult-to-cut materials, such as coefficient of friction, tool wear, cutting forces, cutting temperature, and machined workpiece roughness. Finally, a conclusion of the analyzed papers is given.

18.
Polymers (Basel) ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297973

RESUMO

In this study, we performed small-angle X-ray scattering (SAXS) to investigate the structure of Nafion® membranes. The effect of freeze/thaw (F/T) cycles (from ambient temperature down to -40 °C) on the membrane nanostructure was considered for the first time. The SAXS measurements were taken for different samples: a commercial Nafion® 212 membrane swollen in water and methanol solution, and a water-swollen silica-modified membrane. The membrane structure parameters were obtained from the measured SAXS profiles using a model-dependent approach. It is shown that the average radius of water channels (Rwc) decreases during F/T cycles due to changes in the membrane structure as a result of ice formation in the pore volume after freezing. The use of water-methanol solution (methanol content of 20 vol.%) for the membrane soaking prevents changes in the membrane structure during F/T cycles compared to the water-swollen membrane. Modification of the membrane surface with silica (SiO2 content of 20 wt.%) led to a redistribution of water in the membrane volume and resulted in a decrease in Rwc. However, Rwc for the modified membrane did not decrease with the increasing number of F/T cycles due to the involvement of SiO2 in the sorption of membrane water and, therefore, the prevention of ice formation.

19.
Materials (Basel) ; 15(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35888466

RESUMO

Spray drying is a widely used method of converting liquid material (aqueous or organic solutions, emulsions and suspensions) into a dry powder. Good flowability, narrow size distribution, and controllable morphology are inherent in powders produced by spray drying. This review considers the granulation factors that influence the final properties of the silicon nitride dried powders. The first group includes the types of atomizers, manifolds, and drying chamber configurations. The process parameters fall into the second group and include the following: inlet temperature, atomizing air flow, feed flow rate, drying gas flow rate, outlet temperature, and drying time. Finally, the last group, feedstock parameters, includes many factors such as feed surface tension, feed viscosity, solvent type, solid particle concentration, and additives. Given the large number of factors affecting morphology, particle size and moisture, optimizing the spray drying process is usually achieved by the "trial and error" approach. Nevertheless, some factors such as the effect of a solvent, dispersant, binder, and sintering additives considered in the literature that affect the Si3N4 granulation process were reviewed in the work. By summarizing the data available on silicon nitride powder production, the authors attempt to tackle the problem of its emerging demand in science and industry.

20.
Materials (Basel) ; 15(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806660

RESUMO

Coatings with a thickness from 27 to 62 µm on electron beam melted Ti-6Al-4V have been formed by micro-arc oxidation (MAO) in a silicate-hypophosphite electrolyte. MAO tests in the anode-cathode mode (50 Hz) with an anode-to-cathode current ratio of 1:1 and sum current densities 10 and 20 A/dm2 were carried out. The duration of the MAO treatment was 30 and 60 min. The effect of the processing parameters on the structural properties of the MAO treated coatings was studied. The current density and treatment time significantly affect the coating thickness and surface roughness. The values of these characteristics increase as the current density increases. The effect of thermal cycling tests on surface morphology, thickness and roughness, and elemental and phase composition of MAO coatings was analyzed. After 50 cycles of thermal cycling from +200 °C to -50 °C, no cracking or delamination of coatings was observed. Coatings formed in 30 min at a current density of 20 A/dm2 turned out to be the best in terms of such indicators as surface morphology, thickness, and roughness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA