Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38760174

RESUMO

Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.


Assuntos
Esclerose Lateral Amiotrófica , Glicolatos , Ácido Láctico , Mitocôndrias , Proteína Desglicase DJ-1 , Proteína FUS de Ligação a RNA , Superóxido Dismutase-1 , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Glicolatos/metabolismo , Glicolatos/farmacologia , Mitocôndrias/metabolismo , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/genética , Ácido Láctico/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Potencial da Membrana Mitocondrial , Neurônios Motores/metabolismo , Lisossomos/metabolismo
2.
Curr Biol ; 33(23): 5096-5108.e15, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37979577

RESUMO

Embryos develop in a surrounding that guides key aspects of their development. For example, the anteroposterior (AP) body axis is always aligned with the geometric long axis of the surrounding eggshell in fruit flies and worms. The mechanisms that ensure convergence of the AP axis with the long axis of the eggshell remain unresolved. We investigate axis convergence in early C. elegans development, where the nascent AP axis, when misaligned, actively re-aligns to converge with the long axis of the egg. We identify two physical mechanisms that underlie axis convergence. First, bulk cytoplasmic flows, driven by actomyosin cortical flows, can directly reposition the AP axis. Second, active forces generated within the pseudocleavage furrow, a transient actomyosin structure similar to a contractile ring, can drive a mechanical re-orientation such that it becomes positioned perpendicular to the long axis of the egg. This in turn ensures AP axis convergence. Numerical simulations, together with experiments that either abolish the pseudocleavage furrow or change the shape of the egg, demonstrate that the pseudocleavage-furrow-dependent mechanism is a major driver of axis convergence. We conclude that active force generation within the actomyosin cortical layer drives axis convergence in the early nematode.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Actomiosina , Desenvolvimento Embrionário , Drosophila , Citoesqueleto de Actina , Embrião não Mamífero
4.
Nature ; 609(7927): 597-604, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978196

RESUMO

A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.


Assuntos
Actomiosina , Condensados Biomoleculares , Caenorhabditis elegans , Oócitos , Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animais , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Emulsões/química , Emulsões/metabolismo , Oócitos/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
5.
Mol Biol Cell ; 33(8): ar74, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35544301

RESUMO

Contractile forces in the actomyosin cortex are required for cellular morphogenesis. This includes the invagination of the cell membrane during division, where filaments of nonmuscle myosin II (NMII) are responsible for generating contractile forces in the cortex. However, how NMII heterohexamers form filaments in vivo is not well understood. To quantify NMII filament assembly dynamics, we imaged the cortex of Caenorhabditis elegans embryos at high spatial resolution around the time of the first division. We show that during the assembly of the cytokinetic ring, the number of NMII filaments in the cortex increases and more NMII motors are assembled into each filament. These dynamics are influenced by two proteins in the RhoA GTPase pathway, the RhoA-dependent kinase LET-502 and the myosin phosphatase MEL-11. We find that these two proteins differentially regulate NMII activity at the anterior and at the division site. We show that the coordinated action of these regulators generates a gradient of free NMII in the cytoplasm driving a net diffusive flux of NMII motors toward the cytokinetic ring. Our work highlights how NMII filament assembly and disassembly dynamics are orchestrated over space and time to facilitate the up-regulation of cortical contractility during cytokinesis.


Assuntos
Proteínas de Caenorhabditis elegans , Citocinese , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Miosina Tipo II/metabolismo , Quinases Associadas a rho/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(10): e2107871119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238639

RESUMO

SignificanceBiomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS-DNA polymer that collapses and finally forms a dynamic, reversible FUS-DNA co-condensate. We speculate that protein monolayer-based protein-nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles.


Assuntos
DNA de Cadeia Simples/química , DNA/química , Proteína FUS de Ligação a RNA/química , Humanos , Microscopia de Fluorescência
7.
Phys Rev E ; 104(5-1): 054403, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942783

RESUMO

Recently, it has been shown that the long coiled-coil membrane tether protein early endosome antigen 1 (EEA1) switches from a rigid to a flexible conformation upon binding of a signaling protein to its free end. This flexibility switch represents a motorlike activity, allowing EEA1 to generate a force that moves vesicles closer to the membrane they will fuse with. It was hypothesized that the binding-induced signal could propagate along the coiled coil and lead to conformational changes through the localized domains of the protein chain that deviate from a perfect coiled-coil structure. To elucidate, if upon binding of a single protein the corresponding mechanical signal could propagate through the whole 200-nm-long chain, we propose a simplified description of the coiled coil as a one-dimensional Frenkel-Kontorova chain. Using numerical simulations, we find that an initial perturbation of the chain can propagate along its whole length in the presence of thermal fluctuations. This may enable the change of the configuration of the entire molecule and thereby affect its stiffness. Our work sheds light on intramolecular communication and force generation in long coiled-coil proteins.

8.
Nat Phys ; 17(8): 920-925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777551

RESUMO

Oocytes are large cells that develop into an embryo upon fertilization1. As interconnected germ cells mature into oocytes, some of them grow-typically at the expense of others that undergo cell death2-4. We present evidence that in the nematode Caenorhabditis elegans, this cell-fate decision is mechanical and related to tissue hydraulics. An analysis of germ cell volumes and material fluxes identifies a hydraulic instability that amplifies volume differences and causes some germ cells to grow and others to shrink, a phenomenon that is related to the two-balloon instability5. Shrinking germ cells are extruded and they die, as we demonstrate by artificially reducing germ cell volumes via thermoviscous pumping6. Our work reveals a hydraulic symmetry-breaking transition central to the decision between life and death in the nematode germline.

9.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972425

RESUMO

Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Córtex Cerebral/metabolismo , Forminas/metabolismo , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Blastômeros/citologia , Blastômeros/metabolismo , Padronização Corporal/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Córtex Cerebral/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Forminas/genética , Lateralidade Funcional/genética , Lateralidade Funcional/fisiologia , Transdução de Sinais/genética , Torque , Proteína rhoA de Ligação ao GTP/genética
10.
Elife ; 102021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661100

RESUMO

In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1ß, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1ß. Finally, we find that differences in each HP1 paralog's DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.


Assuntos
Homólogo 5 da Proteína Cromobox/genética , Proteínas Cromossômicas não Histona/genética , DNA/metabolismo , Heterocromatina/metabolismo , Células Cultivadas , Homólogo 5 da Proteína Cromobox/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Ligação Proteica
11.
Nat Commun ; 12(1): 1926, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771992

RESUMO

The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re-organize, due to these perturbations of the gastric environment, are in early phase and rely principally on linear techniques for multivariate analysis. Here we disclose the importance of complementing linear dimensionality reduction techniques with nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we prove the advantages to complete multivariate pattern analysis with differential network analysis, to reveal mechanisms of bacterial network re-organizations which emerge from perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally, we show how to build bacteria-metabolite multilayer networks that can deepen our understanding of the metabolite pathways significantly associated to the perturbed microbial communities.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Aprendizado de Máquina , Microbiota/efeitos dos fármacos , Inibidores da Bomba de Prótons/uso terapêutico , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Humanos , Dinâmica Populacional , RNA Ribossômico 16S/genética , Estômago/microbiologia
12.
Nat Commun ; 11(1): 5604, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154375

RESUMO

Many animal embryos pull and close an epithelial sheet around the ellipsoidal egg surface during a gastrulation process known as epiboly. The ovoidal geometry dictates that the epithelial sheet first expands and subsequently compacts. Moreover, the spreading epithelium is mechanically stressed and this stress needs to be released. Here we show that during extraembryonic tissue (serosa) epiboly in the insect Tribolium castaneum, the non-proliferative serosa becomes regionalized into a solid-like dorsal region with larger non-rearranging cells, and a more fluid-like ventral region surrounding the leading edge with smaller cells undergoing intercalations. Our results suggest that a heterogeneous actomyosin cable contributes to the fluidization of the leading edge by driving sequential eviction and intercalation of individual cells away from the serosa margin. Since this developmental solution utilized during epiboly resembles the mechanism of wound healing, we propose actomyosin cable-driven local tissue fluidization as a conserved morphogenetic module for closure of epithelial gaps.


Assuntos
Epitélio/embriologia , Gastrulação/fisiologia , Insetos/embriologia , Actomiosina/metabolismo , Animais , Fenômenos Biomecânicos , Movimento Celular , Epitélio/metabolismo , Proteínas de Insetos/metabolismo , Morfogênese , Membrana Serosa/embriologia , Membrana Serosa/metabolismo , Tribolium/embriologia , Cicatrização
13.
Elife ; 92020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32644039

RESUMO

Proper positioning of cells is essential for many aspects of development. Daughter cell positions can be specified via orienting the cell division axis during cytokinesis. Rotatory actomyosin flows during division have been implied in specifying and reorienting the cell division axis, but how general such reorientation events are, and how they are controlled, remains unclear. We followed the first nine divisions of Caenorhabditis elegans embryo development and demonstrate that chiral counter-rotating flows arise systematically in early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify a mechanism by which chiral counter-rotating actomyosin flows arise in the AB lineage only, and show that they drive lineage-specific spindle skew and cell reorientation events. In conclusion, our work sheds light on the physical processes that underlie chiral morphogenesis in early development.


Assuntos
Actomiosina/metabolismo , Caenorhabditis elegans/embriologia , Divisão Celular , Linhagem da Célula , Embrião não Mamífero/embriologia , Actomiosina/química , Animais , Fenômenos Bioquímicos , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo
14.
Phys Rev Lett ; 123(13): 130001, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697547

Assuntos
Física , Rotação
15.
Nat Phys ; 15(3): 293-300, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31327978

RESUMO

Spontaneous pattern formation in Turing systems relies on feedback. Patterns in cells and tissues however often do not form spontaneously, but are under control of upstream pathways that provide molecular guiding cues. The relationship between guiding cues and feedback in controlled biological pattern formation remains unclear. We explored this relationship during cell polarity establishment in the one-cell-stage C. elegans embryo. We quantified the strength of two feedback systems that operate during polarity establishment, feedback between polarity proteins and the actomyosin cortex, and mutual antagonism amongst polarity proteins. We characterized how these feedback systems are modulated by guiding cues from the centrosome. By coupling a mass-conserved Turing-like reaction-diffusion system for polarity proteins to an active gel description of the actomyosin cortex, we reveal a transition point beyond which feedback ensures self-organized polarization even when cues are removed. Notably, the baton is passed from a guide-dominated to a feedback-dominated regime significantly beyond this transition point, which ensures robustness. Together, this reveals a general criterion for controlling biological pattern forming systems: feedback remains subcritical to avoid unstable behaviour, and molecular guiding cues drive the system beyond a transition point for pattern formation.

16.
Nature ; 568(7753): E14, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30971828

RESUMO

In this Letter, the sentence starting: 'For instance, Tribolium and Drosophila inflated are direct targets of the mesoderm…' has been corrected online; see accompanying Amendment.

17.
Nature ; 568(7752): 395-399, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918398

RESUMO

During gastrulation, physical forces reshape the simple embryonic tissue to form the complex body plans of multicellular organisms1. These forces often cause large-scale asymmetric movements of the embryonic tissue2,3. In many embryos, the gastrulating tissue is surrounded by a rigid protective shell4. Although it is well-recognized that gastrulation movements depend on forces that are generated by tissue-intrinsic contractility5,6, it is not known whether interactions between the tissue and the protective shell provide additional forces that affect gastrulation. Here we show that a particular part of the blastoderm tissue of the red flour beetle (Tribolium castaneum) tightly adheres in a temporally coordinated manner to the vitelline envelope that surrounds the embryo. This attachment generates an additional force that counteracts tissue-intrinsic contractile forces to create asymmetric tissue movements. This localized attachment depends on an αPS2 integrin (inflated), and the knockdown of this integrin leads to a gastrulation phenotype that is consistent with complete loss of attachment. Furthermore, analysis of another integrin (the αPS3 integrin, scab) in the fruit fly (Drosophila melanogaster) suggests that gastrulation in this organism also relies on adhesion between the blastoderm and the vitelline envelope. Our findings reveal a conserved mechanism through which the spatiotemporal pattern of tissue adhesion to the vitelline envelope provides controllable, counteracting forces that shape gastrulation movements in insects.


Assuntos
Blastoderma/metabolismo , Padronização Corporal/fisiologia , Drosophila melanogaster/embriologia , Gastrulação/fisiologia , Membrana Vitelina/metabolismo , Animais , Coristoma/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Integrinas/metabolismo
18.
Elife ; 82019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30801250

RESUMO

How living systems break symmetry in an organized manner is a fundamental question in biology. In wild-type Caenorhabditis elegans zygotes, symmetry breaking during anterior-posterior axis specification is guided by centrosomes, resulting in anterior-directed cortical flows and a single posterior PAR-2 domain. We uncover that C. elegans zygotes depleted of the Aurora A kinase AIR-1 or lacking centrosomes entirely usually establish two posterior PAR-2 domains, one at each pole. We demonstrate that AIR-1 prevents symmetry breaking early in the cell cycle, whereas centrosomal AIR-1 instructs polarity initiation thereafter. Using triangular microfabricated chambers, we establish that bipolarity of air-1(RNAi) embryos occurs effectively in a cell-shape and curvature-dependent manner. Furthermore, we develop an integrated physical description of symmetry breaking, wherein local PAR-2-dependent weakening of the actin cortex, together with mutual inhibition of anterior and posterior PAR proteins, provides a mechanism for spontaneous symmetry breaking without centrosomes.


Assuntos
Aurora Quinase A/metabolismo , Padronização Corporal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Centrossomo/metabolismo , Animais , Zigoto/fisiologia
19.
Elife ; 72018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30346273

RESUMO

One of the great challenges in biology is to understand the mechanisms by which morphogenetic processes arise from molecular activities. We investigated this problem in the context of actomyosin-based cortical flow in C. elegans zygotes, where large-scale flows emerge from the collective action of actomyosin filaments and actin binding proteins (ABPs). Large-scale flow dynamics can be captured by active gel theory by considering force balances and conservation laws in the actomyosin cortex. However, which molecular activities contribute to flow dynamics and large-scale physical properties such as viscosity and active torque is largely unknown. By performing a candidate RNAi screen of ABPs and actomyosin regulators we demonstrate that perturbing distinct molecular processes can lead to similar flow phenotypes. This is indicative for a 'morphogenetic degeneracy' where multiple molecular processes contribute to the same large-scale physical property. We speculate that morphogenetic degeneracies contribute to the robustness of bulk biological matter in development.


Assuntos
Actomiosina/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Morfogênese , Actinas/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/fisiologia , Fluorescência , Hidrodinâmica , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Miosinas/metabolismo , Interferência de RNA , Reologia
20.
Rep Prog Phys ; 81(7): 076601, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29542442

RESUMO

We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA