Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 451, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432039

RESUMO

Tetragonal garnet-type Li7La3Zr2O12 is an important candidate solid electrolyte for all-solid-state lithium ion batteries because of its high ionic conductivity and large electrochemical potential window. Here we employ atomistic simulation methods to show that the most favourable disorder process in Li7La3Zr2O12 involves loss of Li2O resulting in lithium and oxygen vacancies, which promote vacancy mediated self-diffusion. The activation energy for lithium migration (0.45 eV) is much lower than that for oxygen (1.65 eV). Furthermore, the oxygen migration activation energy reveals that the oxygen diffusion in this material can be facilitated at higher temperatures once oxygen vacancies form.

2.
Sci Rep ; 9(1): 13612, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541185

RESUMO

The nanoporous oxide 12CaO·7Al2O3 (C12A7) can capture large concentrations of extra-framework species inside its nanopores, while maintaining its thermodynamical stability. Here we use atomistic simulation to predict the efficacy of C12A7 to encapsulate volatile fission products, in its stoichiometric and much more effective electride forms. In the stoichiometric form, while Xe, Kr and Cs are not captured, Br, I and Te exhibit strong encapsulation energies while Rb is only weakly encapsulated from atoms. The high electronegativities of Br, I and Te stabilize their encapsulation as anions. The electride form of C12A7 shows a significant enhancement in the encapsulation of Br, I and Te with all three stable as anions from their atom and dimer reference states. Successive encapsulation of multiple Br, I and Te as single anions in adjacent cages is also energetically favourable. Conversely, Xe, Kr, Rb and Cs are unbound. Encapsulation of homonuclear dimers (Br2, I2 and Te2) and heteronuclear dimers (CsBr and CsI) in a single cage is also unfavourable. Thus, C12A7 offers the desirable prospect of species selectivity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-27048730

RESUMO

There has been considerable controversy regarding the structure of TiBe12, which is variously reported as hexagonal and tetragonal. Lattice dynamics simulations based on density functional theory (DFT) show the tetragonal phase space group I4/mmm to be more stable over all temperatures, while the hexagonal phase exhibits an imaginary phonon mode, which, if followed, would lead to the cell adopting the tetragonal structure. We then report the predicted ground state elastic constants and temperature dependence of the bulk modulus and thermal expansion for the tetragonal phase.

4.
Proc Math Phys Eng Sci ; 470(2171): 20140427, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25383028

RESUMO

Using molecular dynamics, the thermophysical properties of the (U x ,Th1-x )O2 system have been investigated between 300 and 3600 K. The thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure is explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's law is approximately observed for solid solution thermal expansion below 2000 K. Different deviations from Vegard's law above this temperature occur owing to the different temperatures at which the solid solutions undergo the superionic transition (2500-3300 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high U content. Correspondingly, oxygen diffusivity is higher in pure UO2 than in pure ThO2. Furthermore, at temperatures below the superionic transition, oxygen mobility is notably higher in solid solutions than in the end members. Enhanced diffusivity is promoted by lower oxygen-defect enthalpies in (U x ,Th1-x )O2 solid solutions. Unlike in UO2 and ThO2, there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (U x ,Th1-x )O2.

5.
Phys Chem Chem Phys ; 15(25): 10494-9, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23677012

RESUMO

The configurations of oxygen ions and vacancies at various oxygen stoichiometries and temperatures in double perovskite oxides (GdBaCo2O(5+δ), 0 ≤ δ ≤ 1) have been determined by density functional theory (DFT) combined with Monte Carlo (MC) simulations. The MC simulations confirmed the existence of a superstructure at δ = 0.5, showing alternating linear ordering of oxygen ions and vacancies along the b-axis in the GdO layer. This structure is identical to that reported experimentally. Increasing the temperature up to 1200 K induces a phase transition manifested in the breaking of the oxygen/vacancy arrangement at around δ = 0.5. In the high-temperature phase, vacancies are distributed in the GdO and CoO2 layers, whereas there are no vacancies in the BaO layer. In addition, the characteristic linear arrangement is partly preserved even in the disordered high-temperature phase. Consequently, oxygen ions can migrate between the GdO and CoO2 layers, as reported in previous classical molecular dynamics simulation studies.

6.
Nature ; 492(7427): 31-3, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23222590
7.
Phys Chem Chem Phys ; 13(6): 2242-9, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21132203

RESUMO

We report on the mechanism and energy barrier for oxygen diffusion in tetragonal La(2)CoO(4+δ). The first principles-based calculations in the Density Functional Theory (DFT) formalism were performed to precisely describe the dominant migration paths for the interstitial oxygen atom in La(2)CoO(4+δ). Atomistic simulations using molecular dynamics (MD) were performed to quantify the temperature dependent collective diffusivity, and to enable a comparison of the diffusion barriers found from the force field-based simulations to those obtained from the first principles-based calculations. Both techniques consistently predict that oxygen migrates dominantly via an interstitialcy mechanism. The single interstitialcy migration path involves the removal of an apical lattice oxygen atom out from the LaO-plane and placing it into the nearest available interstitial site, whilst the original interstitial replaces the displaced apical oxygen on the LaO-plane. The facile migration of the interstitial oxygen in this path is enabled by the cooperative titling-untilting of the CoO(6) octahedron. DFT calculations indicate that this process has an activation energy significantly lower than that of the direct interstitial site exchange mechanism. For 800-1000 K, the MD diffusivities are consistent with the available experimental data within one order of magnitude. The DFT- and the MD-predictions suggest that the diffusion barrier for the interstitialcy mechanism is within 0.31-0.80 eV. The identified migration path, activation energies and diffusivities, and the associated uncertainties are discussed in the context of the previous experimental and theoretical results from the related Ruddlesden-Popper structures.

8.
Science ; 329(5993): 799-803, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20705854

RESUMO

Concerns about climate change, security of supply, and depleting fossil fuel reserves have spurred a revival of interest in nuclear power generation in Europe and North America, while other regions continue or initiate an expansion. We suggest that the first stage of this process will include replacing or extending the life of existing nuclear power plants, with continued incremental improvements in efficiency and reliability. After 2030, a large-scale second period of construction would allow nuclear energy to contribute substantially to the decarbonization of electricity generation. For nuclear energy to be sustainable, new large-scale fuel cycles will be required that may include fuel reprocessing. Here, we explore the opportunities and constraints in both time periods and suggests ways in which measures taken today might, at modest cost, provide more options in the decades to come. Careful long-term planning, along with parallel efforts aimed at containing waste products and avoiding diversion of material into weapons production, can ensure that nuclear power generation remains a carbon-neutral option.

9.
Phys Chem Chem Phys ; 12(25): 6834-6, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20461243

RESUMO

Oxygen transport in tetragonal Pr(2)NiO(4+delta) has been investigated using molecular dynamics simulations in conjunction with a set of Born model potentials. Oxygen diffusion in Pr(2)NiO(4+delta) is highly anisotropic, occurring almost entirely via an interstitialcy mechanism in the a-b plane. The calculated oxygen diffusivity has a weak dependence upon the concentration of oxygen interstitials, in agreement with experimental observations. In the temperature range 800-1500 K, the activation energy for migration varied between 0.49 and 0.64 eV depending upon the degree of hyperstoichiometry. The present results are compared to previous work on oxygen self-diffusion in related K(2)NiF(4) structure materials.

10.
J Phys Condens Matter ; 22(17): 175004, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21393662

RESUMO

Computer simulations are used to investigate the stability of typical dislocations in uranium dioxide. We explain in detail the methods used to produce the dislocation configurations and calculate the line energy and Peierls barrier for pure edge and screw dislocations with the shortest Burgers vector ½⟨110⟩. The easiest slip system is found to be the {100}⟨110⟩ system for stoichiometric UO(2), in agreement with experimental observations. We also examine the different strain fields associated with these line defects and the close agreement between the strain field predicted by atomic scale models and the application of elastic theory. Molecular dynamics simulations are used to investigate the processes of slip that may occur for the three different edge dislocation geometries and nudged elastic band calculations are used to establish a value for the Peierls barrier, showing the possible utility of the method in investigating both thermodynamic average behaviour and dynamic processes such as creep and plastic deformation.

11.
Nat Mater ; 7(9): 683-5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18719698
12.
Nat Mater ; 6(3): 217-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17322869

RESUMO

Ceramics destined for use in hostile environments such as nuclear reactors or waste immobilization must be highly durable and especially resistant to radiation damage effects. In particular, they must not be prone to amorphization or swelling. Few ceramics meet these criteria and much work has been devoted in recent years to identifying radiation-tolerant ceramics and the characteristics that promote radiation tolerance. Here, we examine trends in radiation damage behaviour for families of compounds related by crystal structure. Specifically, we consider oxides with structures related to the fluorite crystal structure. We demonstrate that improved amorphization resistance characteristics are to be found in compounds that have a natural tendency to accommodate lattice disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA