Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Cancer ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341696

RESUMO

Ovarian cancer (OC) represents ecosystems of highly diverse tumor microenvironments (TMEs). The presence of tumor-infiltrating lymphocytes (TILs) is linked to enhanced immune responses and long-term survival. In this review we present emerging evidence suggesting that cellular crosstalk tightly regulates the distribution of TILs within the TME, underscoring the need to better understand key cellular networks that promote or impede T cell infiltration in OC. We also capture the emergent methodologies and computational techniques that enable the dissection of cell-cell crosstalk. Finally, we present innovative ex vivo TME models that can be leveraged to map and perturb cellular communications to enhance T cell infiltration and immune reactivity.

2.
Nat Rev Clin Oncol ; 21(11): 801-817, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39232212

RESUMO

Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.


Assuntos
Inibidores de Checkpoint Imunológico , Imunofenotipagem , Imunoterapia , Neoplasias Ovarianas , Microambiente Tumoral , Humanos , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Feminino , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunofenotipagem/métodos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Biomarcadores Tumorais/genética
3.
Nature ; 629(8011): 426-434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658764

RESUMO

Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rß-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos , Proliferação de Células , Dinoprostona , Interleucina-2 , Linfócitos do Interstício Tumoral , Mitocôndrias , Transdução de Sinais , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Dinoprostona/metabolismo , Regulação para Baixo , Ferroptose , Subunidade gama Comum de Receptores de Interleucina/biossíntese , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Interleucina-2/antagonistas & inibidores , Interleucina-2/imunologia , Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/metabolismo , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/imunologia
4.
Nature ; 629(8011): 417-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658748

RESUMO

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Assuntos
Linfócitos T CD8-Positivos , Proliferação de Células , Dinoprostona , Linfócitos do Interstício Tumoral , Neoplasias , Células-Tronco , Evasão Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Dinoprostona/metabolismo , Modelos Animais de Doenças , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Interleucina-2 , Linfonodos/citologia , Linfonodos/imunologia , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/prevenção & controle , Receptores de Prostaglandina E Subtipo EP2/deficiência , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/deficiência , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Evasão Tumoral/imunologia
5.
Sci Immunol ; 9(92): eadg7995, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306416

RESUMO

Adoptive cell therapy (ACT) using ex vivo-expanded tumor-infiltrating lymphocytes (TILs) can eliminate or shrink metastatic melanoma, but its long-term efficacy remains limited to a fraction of patients. Using longitudinal samples from 13 patients with metastatic melanoma treated with TIL-ACT in a phase 1 clinical study, we interrogated cellular states within the tumor microenvironment (TME) and their interactions. We performed bulk and single-cell RNA sequencing, whole-exome sequencing, and spatial proteomic analyses in pre- and post-ACT tumor tissues, finding that ACT responders exhibited higher basal tumor cell-intrinsic immunogenicity and mutational burden. Compared with nonresponders, CD8+ TILs exhibited increased cytotoxicity, exhaustion, and costimulation, whereas myeloid cells had increased type I interferon signaling in responders. Cell-cell interaction prediction analyses corroborated by spatial neighborhood analyses revealed that responders had rich baseline intratumoral and stromal tumor-reactive T cell networks with activated myeloid populations. Successful TIL-ACT therapy further reprogrammed the myeloid compartment and increased TIL-myeloid networks. Our systematic target discovery study identifies potential T-myeloid cell network-based biomarkers that could improve patient selection and guide the design of ACT clinical trials.


Assuntos
Imunoterapia Adotiva , Melanoma , Humanos , Melanoma/genética , Linfócitos do Interstício Tumoral/metabolismo , Proteômica , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral
6.
Cancer Cell ; 39(12): 1623-1642.e20, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34739845

RESUMO

The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Antígenos CD28/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Mieloides/metabolismo , Neoplasias/tratamento farmacológico , Nicho de Células-Tronco/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/imunologia
7.
Cell Rep ; 36(3): 109412, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289354

RESUMO

In this study, we investigate mechanisms leading to inflammation and immunoreactivity in ovarian tumors with homologous recombination deficiency (HRD). BRCA1 loss is found to lead to transcriptional reprogramming in tumor cells and cell-intrinsic inflammation involving type I interferon (IFN) and stimulator of IFN genes (STING). BRCA1-mutated (BRCA1mut) tumors are thus T cell inflamed at baseline. Genetic deletion or methylation of DNA-sensing/IFN genes or CCL5 chemokine is identified as a potential mechanism to attenuate T cell inflammation. Alternatively, in BRCA1mut cancers retaining inflammation, STING upregulates VEGF-A, mediating immune resistance and tumor progression. Tumor-intrinsic STING elimination reduces neoangiogenesis, increases CD8+ T cell infiltration, and reverts therapeutic resistance to dual immune checkpoint blockade (ICB). VEGF-A blockade phenocopies genetic STING loss and synergizes with ICB and/or poly(ADP-ribose) polymerase (PARP) inhibitors to control the outgrowth of Trp53-/-Brca1-/- but not Brca1+/+ ovarian tumors in vivo, offering rational combinatorial therapies for HRD cancers.


Assuntos
Proteína BRCA1/deficiência , Inflamação/patologia , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Animais , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Dano ao DNA , Epigênese Genética , Feminino , Inativação Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inflamação/complicações , Inflamação/imunologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Gradação de Tumores , Neovascularização Patológica/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/imunologia , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817208

RESUMO

BACKGROUND: Novel therapeutic strategies in ovarian cancer (OC) are needed as the survival rate remains dismally low. Although dendritic cell-based cancer vaccines are effective in eliciting therapeutic responses, their complex and costly manufacturing process hampers their full clinical utility outside specialized clinics. Here, we describe a novel approach of generating a rapid and effective cancer vaccine using ascites-derived monocytes for treating OC. METHODS: Using the ID8 mouse ovarian tumor model and OC patient samples, we isolated ascites monocytes and evaluated them with flow cytometry, Luminex cytokine and chemokine array analysis, ex vivo cocultures with T cells, in vivo tumor challenge and T cell transfer experiments, RNA-sequencing and mass spectrometry. RESULTS: We demonstrated the feasibility of isolating ascites monocytes and restoring their ability to function as bona fide antigen-presenting cells (APCs) with Toll-like receptor (TLR) 4 lipopolysaccharide and TLR9 CpG-oligonucleotides, and a blocking antibody to interleukin-10 receptor (IL-10R Ab) in the ID8 model. The ascites monocytes were laden with tumor antigens at a steady state in vivo. After a short 48 hours activation, they upregulated maturation markers (CD80, CD86 and MHC class I) and demonstrated strong ex vivo T cell stimulatory potential and effectively suppressed tumor and malignant ascites in vivo. They also induced protective long-term T cell memory responses. To evaluate the translational potential of this approach, we isolated ascites monocytes from stage III/IV chemotherapy-naïve OC patients. Similarly, the human ascites monocytes presented tumor-associated antigens (TAAs), including MUC1, ERBB2, mesothelin, MAGE, PRAME, GPC3, PMEL and TP53 at a steady state. After a 48-hour treatment with TLR4 and IL-10R Ab, they efficiently stimulated oligoclonal tumor-associated lymphocytes (TALs) with strong reactivity against TAAs. Importantly, the activated ascites monocytes retained their ability to activate TALs in the presence of ascitic fluid. CONCLUSIONS: Ascites monocytes are naturally loaded with tumor antigen and can perform as potent APCs following short ex vivo activation. This novel ascites APC vaccine can be rapidly prepared in 48 hours with a straightforward and affordable manufacturing process, and would be an attractive therapeutic vaccine for OC.


Assuntos
Ascite/fisiopatologia , Vacinas Anticâncer/imunologia , Monócitos/metabolismo , Neoplasias Ovarianas/imunologia , Receptores Toll-Like/imunologia , Animais , Feminino , Humanos , Mesotelina , Camundongos , Neoplasias Ovarianas/mortalidade , Análise de Sobrevida
9.
Curr Opin Biotechnol ; 65: 190-196, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32334152

RESUMO

New treatments are urgently needed in patients with ovarian cancer (OC), as diagnosis is delayed in many instances, resulting in 85% recurrence of the disease following surgery and standard chemotherapy. OC is considered to be an immunological type of cancer, despite its limited response to current immunotherapy options, including vaccination. Thus, additional interventions may improve their efficacy. Dendritic cells (DCs) are the most widely used cellular vaccination therapy in patients with OC due to their crucial role in the initiation and development of immune response. There are viable options for DC-vaccination with a favorable toxicity profile, but specific alternatives should consider the limited therapeutic effectiveness of DC-vaccination in OC treatment. In this respect, B-cells and macrophages provide additional possibilities that may be explored for immunotherapy. Here we consider the current state-of-the-art of immunotherapy strategies for OC treatment and evaluate their potential for future improvements.


Assuntos
Vacinas Anticâncer , Neoplasias Ovarianas , Vacinas , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Feminino , Humanos , Imunoterapia , Neoplasias Ovarianas/terapia
10.
Cancer Cell ; 35(6): 885-900.e10, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185212

RESUMO

We investigated the role of chemokines in regulating T cell accumulation in solid tumors. CCL5 and CXCL9 overexpression was associated with CD8+ T cell infiltration in solid tumors. T cell infiltration required tumor cell-derived CCL5 and was amplified by IFN-γ-inducible, myeloid cell-secreted CXCL9. CCL5 and CXCL9 coexpression revealed immunoreactive tumors with prolonged survival and response to checkpoint blockade. Loss of CCL5 expression in human tumors was associated with epigenetic silencing through DNA methylation. Reduction of CCL5 expression caused tumor-infiltrating lymphocyte (TIL) desertification, whereas forced CCL5 expression prevented Cxcl9 expression and TILs loss, and attenuated tumor growth in mice through IFN-γ. The cooperation between tumor-derived CCL5 and IFN-γ-inducible CXCR3 ligands secreted by myeloid cells is key for orchestrating T cell infiltration in immunoreactive and immunoresponsive tumors.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Quimiotaxia de Leucócito , Citocinas/metabolismo , Células Dendríticas/metabolismo , Ativação Linfocitária , Linfócitos do Interstício Tumoral/metabolismo , Macrófagos/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/genética , Citocinas/imunologia , Metilação de DNA , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia/métodos , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Comunicação Parácrina , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Transdução de Sinais
11.
Vaccine ; 34(21): 2453-2459, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27016652

RESUMO

Subunit vaccines, employing purified protein antigens rather than intact pathogens, require the addition of adjuvants for enhanced immunogenicity with a correct balance between strong activation of the immune system and low toxicity. Here we show that the endogenous (i.e., autologous) non-toxic TLR4 agonist extra domain A type III repeat of fibronectin (FNIII EDA) can synergize with the exogenous (i.e., bacterial), toxic-at-high-dose, TLR9 agonist CpG to induce efficient cellular immune responses while keeping the dose of CpG low. The efficacy of the combined TLR agonists, even at half-doses, led to stronger dendritic cell activation, enhanced cytotoxic T lymphocyte activation as well as stronger humoral response, compared to the individual agonists given at full doses. Immune cells induced after vaccination with the co-adjuvanted formulation could mediate tumor regression in an E.G7-OVA tumor model, and eradicate circulating hepatitis B virus (HBV) in a transgenic HBV model. Together, these results show that endogenous TLR agonists, such as variants of FNIII EDA, can synergize with exogenous TLR ligands, such as CpG, and strongly enhance cellular immune responses, while improving their safety profile.


Assuntos
Vacinas Anticâncer/imunologia , Fibronectinas/imunologia , Vacinas contra Hepatite B/imunologia , Oligodesoxirribonucleotídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Receptor 4 Toll-Like/agonistas , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Modelos Animais de Doenças , Fibronectinas/química , Hepatite B/imunologia , Hepatite B/virologia , Vacinas contra Hepatite B/administração & dosagem , Vírus da Hepatite B/imunologia , Imunidade Celular , Imunidade Humoral , Camundongos , Camundongos Transgênicos , Receptores de Reconhecimento de Padrão , Receptor 4 Toll-Like/imunologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/imunologia , Vacinação
12.
Sci Rep ; 5: 15907, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511151

RESUMO

New approaches based on induction of antigen-specific immunological tolerance are being explored for treatment of autoimmunity and prevention of immunity to protein drugs. Antigens associated with apoptotic debris are known to be processed tolerogenically in vivo. Our group is exploring an approach toward antigen-specific tolerization using erythrocyte-binding antigens, based on the premise that as the erythrocytes circulate, age and are cleared, the erythrocyte surface-bound antigen payload will be cleared tolerogenically along with the eryptotic debris. Here, we characterized the phenotypic signatures of CD8+ T cells undergoing tolerance in response to soluble and erythrocyte-targeted antigen. Signaling through programmed death-1/programmed death ligand-1 (PD-1/PD-L1), but not through cytotoxic T lymphocyte antigen 4 (CTLA4), was shown to be required for antigen-specific T cell deletion, anergy and expression of regulatory markers. Generation of CD25+FOXP3+ regulatory T cells in response to erythrocyte-targeted antigens but not soluble antigen at an equimolar dose was observed, and these cells were required for long-term maintenance of immune tolerance in both the CD4+ and CD8+ T cell compartments. Evidence of infectious tolerance was observed, in that tolerance to a one antigenic epitope was able to regulate responses to other epitopes in the same protein antigen.


Assuntos
Antígenos/imunologia , Eritrócitos/imunologia , Tolerância Imunológica , Memória Imunológica , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos
13.
Curr Opin Immunol ; 35: 80-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26163377

RESUMO

Unwanted immunity develops in response to many protein drugs, in autoimmunity, in allergy, and in transplantation. Approaches to induce immunological tolerance aim to either prevent these responses or reverse them after they have already taken place. We present here recent developments in approaches, based on engineered peptides, proteins and biomaterials, that harness mechanisms of peripheral tolerance both prophylactically and therapeutically to induce antigen-specific immunological tolerance. These mechanisms are based on responses of B and T lymphocytes to other cells in their immune environment that result in cellular deletion or ignorance to particular antigens, or in development of active immune regulatory responses. Several of these approaches are moving toward clinical development, and some are already in early stages of clinical testing.


Assuntos
Linfócitos B/imunologia , Tolerância Periférica , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Apoptose , Epitopos/metabolismo , Humanos , Engenharia de Proteínas , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos B/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA