Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 142(13): 1143-1155, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294920

RESUMO

Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin lymphoma, is characterized by an aggressive clinical course. In approximately one-third of patients with DLBCL, first-line multiagent immunochemotherapy fails to produce a durable response. Molecular heterogeneity and apoptosis resistance pose major therapeutic challenges in DLBCL treatment. To circumvent apoptosis resistance, the induction of ferroptosis might represent a promising strategy for lymphoma therapy. In this study, a compound library, targeting epigenetic modulators, was screened to identify ferroptosis-sensitizing drugs. Strikingly, bromodomain and extra-terminal domain (BET) inhibitors sensitized cells of the germinal center B-cell-like (GCB) subtype of DLBCL to ferroptosis induction and the combination of BET inhibitors with ferroptosis inducers, such as dimethyl fumarate or RSL3, synergized in the killing of DLBCL cells in vitro and in vivo. On the molecular level, the BET protein BRD4 was found to be an essential regulator of ferroptosis suppressor protein 1 expression and thus to protect GCB-DLBCL cells from ferroptosis. Collectively, we identified and characterized BRD4 as an important player in ferroptosis suppression in GCB-DLBCL and provide a rationale for the combination of BET inhibitors with ferroptosis-inducing agents as a novel therapeutic approach for DLBCL treatment.


Assuntos
Ferroptose , Linfoma Difuso de Grandes Células B , Humanos , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfócitos B/patologia , Proteínas de Ciclo Celular
2.
Blood ; 138(10): 871-884, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33876201

RESUMO

Despite the development of novel targeted drugs, the molecular heterogeneity of diffuse large B-cell lymphoma (DLBCL) still poses a substantial therapeutic challenge. DLBCL can be classified into at least 2 major subtypes (germinal center B cell [GCB]-like and activated B cell [ABC]-like DLBCL), each characterized by specific gene expression profiles and mutation patterns. Here we demonstrate a broad antitumor effect of dimethyl fumarate (DMF) on both DLBCL subtypes, which is mediated by the induction of ferroptosis, a form of cell death driven by the peroxidation of phospholipids. As a result of the high expression of arachidonate 5-lipoxygenase in concert with low glutathione and glutathione peroxidase 4 levels, DMF induces lipid peroxidation and thus ferroptosis, particularly in GCB DLBCL. In ABC DLBCL cells, which are addicted to NF-κB and STAT3 survival signaling, DMF treatment efficiently inhibits the activity of the IKK complex and Janus kinases. Interestingly, the BCL-2-specific BH3 mimetic ABT-199 and an inhibitor of ferroptosis suppressor protein 1 synergize with DMF in inducing cell death in DLBCL. Collectively, our findings identify the clinically approved drug DMF as a promising novel therapeutic option in the treatment of both GCB and ABC DLBCLs.


Assuntos
Fumarato de Dimetilo/farmacologia , Ferroptose/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/metabolismo , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , NF-kappa B/genética , Proteínas de Neoplasias/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
3.
Sci Rep ; 8(1): 12434, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127460

RESUMO

Central to intrinsic apoptosis signaling is the release of cytochrome c from mitochondria, which depends on the pro-apoptotic effector proteins Bax, Bak or Bok. These pore-forming effector proteins share four Bcl-2 homology (BH) domains, a functionally essential and conserved sequence of hydrophobic amino acids in their BH3-domain and a C-terminal transmembrane-domain whose specific function remains rather unknown. To elucidate the molecular basis of Bok-mediated apoptosis we analyzed apoptosis induction by transmembrane-domain deficient BokΔTM compared to the respective Bax and Bak proteins and proteins in which the first leucine in the BH3-stretch was mutated to glutamic acid. We show that deletion of the C-terminal transmembrane-domain reduces the pro-apoptotic function of each protein. Mutation of the first leucine in the BH3-domain (L78E) blocks activity of Bak, while mutation of the homologue residues in Bax or Bok (L63E and L70E respectively) does not affect apoptosis induction. Unexpectedly, combined mutation of the BH3-domain and deletion of the transmembrane-domain enhances the pro-apoptotic activity of Bok(L70E)ΔTM by abolishing the interaction with anti-apoptotic proteins, especially the primary Bok-inhibitory protein Mcl-1. These results therefore suggest a specific contribution of the transmembrane-domain to the pro-apoptotic function and interaction of Bok.


Assuntos
Domínios Proteicos/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo
4.
Med Sci Sports Exerc ; 48(8): 1459-67, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27015383

RESUMO

INTRODUCTION: This study investigated the effects of aerobic exercise (AE) on both the maturation of dendritic cells (DC) and the activation of lymphocytes in a mouse model of chronic allergic airway inflammation. METHODS: C57BL/6 mice distributed into control, exercise, ovalbumin (OVA), and OVA + exercise groups were submitted to OVA sensitization and challenge. Treadmill training was performed for 4 wk, and mice were assessed for classical features of chronic allergic airway inflammation as well as dendritic cell activation and T-lymphocyte response. RESULTS: AE reduced OVA-induced eosinophilic inflammation as observed in bronchoalveolar lavage fluid (P < 0.001), airway walls (P < 0001), and also reduced collagen deposition (P < 0.001). AE also reduced bronchoalveolar lavage fluid cytokines (interleukin [IL]-4, P < 0.001; IL-5, P < 0.01; IL-6, P < 0.001; IL-13, P < 0.01; and tumor necrosis factor α, P < 0.01). Cells derived from mediastinal lymphnodes of AE animals that were restimulated with OVA produced less IL-4 (P < 0.01), IL-5 (P < 0.01), and IL-13 (P < 0.001). In addition, AE reduced both DC activation, as demonstrated by reduced release of IL-6 (P < 0.001), CXCL1/KC (P < 0.01), IL-12p70 (P < 0.01), and tumor necrosis factor α (P < 0.05) and DC maturation, as demonstrated by lower MCH-II expression (P < 0.001). CONCLUSION: AE attenuated dendritic cell and lymphocyte activation and maturation, which contributed to reduced airway inflammation and remodeling in the OVA model of chronic allergic airway inflammation.


Assuntos
Asma/imunologia , Células Dendríticas/citologia , Inflamação/imunologia , Condicionamento Físico Animal , Remodelação das Vias Aéreas/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Ativação Linfocitária , Masculino , Camundongos Endogâmicos C57BL , Linfócitos T/citologia
5.
Respir Res ; 16: 105, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369416

RESUMO

RATIONALE: Pulmonary fibrosis is a progressive disease with only few treatment options available at the moment. Recently, the nucleoside uridine has been shown to exert anti-inflammatory effects in different animal models, e.g. in acute lung injury or bronchial asthma. METHOD: Therefore, we investigated the influence of uridine supplementation on inflammation and fibrosis in the classical bleomycin model. Male C57BL/6 mice received an intratracheal injection of bleomycin on day 0 and were treated intraperitoneally with uridine or vehicle. The degree of inflammation and fibrosis was assessed at different time points. RESULTS: Uridine administration resulted in attenuated inflammation, as demonstrated by reduced leukocytes and pro-inflammatory cytokines in the broncho-alveolar lavage (BAL) fluid. Furthermore, collagen deposition in the lung interstitium was also reduced by uridine supplementation. Similar results were obtained in a model in which animals received repeated intraperitoneal bleomycin injections. In addition uridine inhibited collagen and TGF-ß synthesis by primary lung fibroblasts, the release of pro-inflammatory cytokines by human lung epithelial cells, as well as the production of reactive oxygen species by human neutrophils. CONCLUSION: In summary, we were able to show that uridine has potent anti-inflammatory and anti-fibrotic properties. As uridine supplementation has been shown to be well tolerated and safe in humans, this might be a new therapeutic approach for the treatment of fibrotic lung diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Pulmão/efeitos dos fármacos , Pneumonia/prevenção & controle , Fibrose Pulmonar/prevenção & controle , Uridina/farmacologia , Animais , Bleomicina , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular Tumoral , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 34(10): 2237-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25104800

RESUMO

OBJECTIVE: Nucleotides such as ATP, ADP, UTP, and UDP serve as proinflammatory danger signals via purinergic receptors on their release to the extracellular space by activated or dying cells. UDP binds to the purinergic receptor Y6 (P2Y6) and propagates vascular inflammation by inducing the expression of chemokines such as monocyte chemoattractant protein 1, interleukin-8, or its mouse homologsCCL1 (chemokine [C-C motif] ligand 1)/keratinocyte chemokine, CXCL2 (chemokine [C-X-C motif] ligand 2)/macrophage inflammatory protein 2, and CXCL5 (chemokine [C-X-C motif] ligand 5)/LIX, and adhesion molecules such as vascular cell adhesion molecule 1 and intercellular cell adhesion molecule 1. Thus, P2Y6 contributes to leukocyte recruitment and inflammation in conditions such as allergic asthma or sepsis. Because atherosclerosis is a chronic inflammatory disease driven by leukocyte recruitment to the vessel wall, we hypothesized a role of P2Y6 in atherogenesis. APPROACH AND RESULTS: Intraperitoneal stimulation of wild-type mice with UDP induced rolling and adhesion of leukocytes to the vessel wall as assessed by intravital microscopy. This effect was not present in P2Y6-deficient mice. Atherosclerotic aortas of low-density lipoprotein receptor-deficient mice consuming high-cholesterol diet for 16 weeks expressed significantly more transcripts and protein of P2Y6 than respective controls. Finally, P2Y6 (-/-)/low-density lipoprotein receptor-deficient mice consuming high-cholesterol diet for 16 weeks developed significantly smaller atherosclerotic lesions compared with P2Y6 (+/+)/low-density lipoprotein receptor-deficient mice. Bone marrow transplantation identified a crucial role of P2Y6 on vascular resident cells, most likely endothelial cells, on leukocyte recruitment and atherogenesis. Atherosclerotic lesions of P2Y6-deficient mice contained fewer macrophages and fewer lipids as determined by immunohistochemistry. Mechanistically, RNA expression of vascular cell adhesion molecule 1 and interleukin-6 was decreased in these lesions and P2Y6-deficient macrophages took up less modified low-density lipoprotein cholesterol. CONCLUSIONS: We show for the first time that P2Y6 deficiency limits atherosclerosis and plaque inflammation in mice.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Inflamação/prevenção & controle , Receptores Purinérgicos P2/deficiência , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Transplante de Medula Óssea , Colesterol na Dieta , Modelos Animais de Doenças , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Migração e Rolagem de Leucócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Purinérgicos P2/genética , Transdução de Sinais , Fatores de Tempo , Migração Transendotelial e Transepitelial , Difosfato de Uridina/metabolismo
7.
J Clin Invest ; 123(3): 1216-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23391720

RESUMO

Chemically modified mRNA is capable of inducing therapeutic levels of protein expression while circumventing the threat of genomic integration often associated with viral vectors. We utilized this novel therapeutic tool to express the regulatory T cell transcription factor, FOXP3, in a time- and site-specific fashion in murine lung, in order to prevent allergic asthma in vivo. We show that modified Foxp3 mRNA rebalanced pulmonary T helper cell responses and protected from allergen-induced tissue inflammation, airway hyperresponsiveness, and goblet cell metaplasia in 2 asthma models. This protection was conferred following delivery of modified mRNA either before or after the onset of allergen challenge, demonstrating its potential as both a preventive and a therapeutic agent. Mechanistically, FOXP3 induction controlled Th2 and Th17 inflammation by regulating innate immune cell recruitment through an IL-10-dependent pathway. The protective effects of FOXP3 could be reversed by depletion of IL-10 or administration of recombinant IL-17A or IL-23. Delivery of Foxp3 mRNA to sites of inflammation may offer a novel, safe therapeutic tool for the treatment of allergic asthma and other diseases driven by an imbalance in helper T cell responses.


Assuntos
Asma/prevenção & controle , Fatores de Transcrição Forkhead/genética , Interleucina-10/metabolismo , RNA Mensageiro/genética , Remodelação das Vias Aéreas , Resistência das Vias Respiratórias , Animais , Asma/imunologia , Asma/metabolismo , Linhagem Celular , Citidina/análogos & derivados , Citidina/química , Feminino , Fatores de Transcrição Forkhead/biossíntese , Expressão Gênica , Terapia Genética , Humanos , Imunidade Inata , Mediadores da Inflamação/farmacologia , Mediadores da Inflamação/fisiologia , Interleucina-17/farmacologia , Interleucina-17/fisiologia , Interleucina-23/farmacologia , Interleucina-23/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pyroglyphidae/imunologia , RNA Mensageiro/química , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Tiouridina/análogos & derivados , Tiouridina/química , Transfecção
8.
Am J Respir Crit Care Med ; 187(5): 476-85, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23328530

RESUMO

RATIONALE: 5-Hydroxytryptamine (5-HT) is involved in the pathogenesis of allergic airway inflammation (AAI). It is unclear, however, how 5-HT contributes to AAI and whether this depends on tryptophan hydroxylase (TPH) 1, the critical enzyme for peripheral 5-HT synthesis. OBJECTIVES: To elucidate the role of TPH1 and the peripheral source of 5-HT in asthma pathogenesis. METHODS: TPH1-deficient and TPH1-inhibitor-treated animals were challenged in ovalbumin and house dust mite models of AAI. Experiments with bone marrow chimera, mast cell-deficient animals, platelets transfusion, and bone marrow dendritic cells (BMDC) driven model of AAI were performed. 5-HT levels were measured in bronchoalveolar lavage fluid or serum of animals with AAI and in human asthma. MEASUREMENTS AND MAIN RESULTS: 5-HT levels are increased in bronchoalveolar lavage fluid of mice and people with asthma after allergen provocation. TPH1 deficiency and TPH1 inhibition reduced all cardinal features of AAI. Administration of exogenous 5-HT restored AAI in TPH1-deficient mice. The pivotal role of 5-HT production by structural cells was corroborated by bone marrow chimera experiments. Experiments in mast cell-deficient mice revealed that mast cells are not a source of 5-HT, whereas transfusion of platelets from wild-type and TPH1-deficient mice revealed that only platelets containing 5-HT enhanced AAI. Lack of endogenous 5-HT in vitro and in vivo was associated with an impaired Th2-priming capacity of BMDC. CONCLUSIONS: In summary, TPH1 deficiency or inhibition reduces AAI. Platelet- and not mast cell-derived 5-HT is pivotal in AAI, and lack of 5-HT leads to an impaired Th2-priming capacity of BMDC. Thus, targeting TPH1 could offer novel therapeutic options for asthma.


Assuntos
Asma/imunologia , Plaquetas/imunologia , Serotonina/metabolismo , Triptofano Hidroxilase/imunologia , Animais , Asma/fisiopatologia , Plaquetas/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Células Dendríticas/imunologia , Humanos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina , Pyroglyphidae , Serotonina/biossíntese , Serotonina/farmacologia , Triptofano Hidroxilase/antagonistas & inibidores , Triptofano Hidroxilase/deficiência
9.
Gastroenterology ; 143(6): 1620-1629.e4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22974709

RESUMO

BACKGROUND & AIMS: During progression of liver disease, inflammation affects survival of hepatocytes. Endogenous release of adenosine triphosphate (ATP) in the liver activates purinergic P2 receptors (P2R), which regulate inflammatory responses, but little is known about the roles of these processes in the development of acute hepatitis. METHODS: We induced acute hepatitis in C57BL/6 mice by intravenous injection of concanavalin A and then analyzed liver concentrations of ATP and expression of P2R. We assessed P2Y(2)R(-/-) mice and C57BL/6 wild-type mice injected with suramin, a pharmacologic inhibitor of P2YR. Toxic liver failure was induced in mice by intraperitoneal injection of acetaminophen. Hepatocyte-specific functions of P2R signaling were analyzed in primary mouse hepatocytes. RESULTS: Induction of acute hepatitis in wild-type C57BL/6 mice released large amounts of ATP from livers and induced expression of P2Y(2)R. Liver damage and necrosis were greatly reduced in P2Y(2)R(-/-) mice and C57BL/6 mice given injections of suramin. Acetaminophen-induced liver damage was reduced in P2Y(2)R(-/-) mice. Analysis of liver-infiltrating immune cells during acute hepatitis revealed that expression of P2Y(2)R in bone marrow-derived cells was required for liver infiltration by neutrophils and subsequent liver damage. Hepatic expression of P2Y(2)R interfered with expression of genes that regulate cell survival, and promoted tumor necrosis factor-α-mediated cell death, in a cell-autonomous manner. CONCLUSIONS: Extracellular ATP and P2Y(2)R have cell-type specific, but synergistic functions during liver damage that regulate cellular immune responses and promote hepatocyte death. Reagents designed to target P2Y(2)R might be developed to treat inflammatory liver disease.


Assuntos
Apoptose/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/patologia , Infiltração de Neutrófilos/fisiologia , Receptores Purinérgicos P2Y2/fisiologia , Doença Aguda , Trifosfato de Adenosina/metabolismo , Animais , Movimento Celular/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Concanavalina A/efeitos adversos , Modelos Animais de Doenças , Hepatócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2Y2/deficiência , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Suramina/farmacologia
10.
PLoS One ; 7(5): e37560, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22624049

RESUMO

The nucleotide adenosine-5'-monophosphate (AMP) can be released by various cell types and has been shown to elicit different cellular responses. In the extracellular space AMP is dephosphorylated to the nucleoside adenosine which can then bind to adenosine receptors. However, it has been shown that AMP can also activate A(1) and A(2a) receptors directly. Here we show that AMP is a potent modulator of mouse and human dendritic cell (DC) function. AMP increased intracellular Ca(2+) concentration in a time and dose dependent manner. Furthermore, AMP stimulated actin-polymerization in human DCs and induced migration of immature human and bone marrow derived mouse DCs, both via direct activation of A(1) receptors. AMP strongly inhibited secretion of TNF-α and IL-12p70, while it enhanced production of IL-10 both via activation of A(2a) receptors. Consequently, DCs matured in the presence of AMP and co-cultivated with naive CD4(+)CD45RA(+) T cells inhibited IFN-γ production whereas secretion of IL-5 and IL-13 was up-regulated. An enhancement of Th2-driven immune response could also be observed when OVA-pulsed murine DCs were pretreated with AMP prior to co-culture with OVA-transgenic naïve OTII T cells. An effect due to the enzymatic degradation of AMP to adenosine could be ruled out, as AMP still elicited migration and changes in cytokine secretion in bone-marrow derived DCs generated from CD73-deficient animals and in human DCs pretreated with the ecto-nucleotidase inhibitor 5'-(alpha,beta-methylene) diphosphate (APCP). Finally, the influence of contaminating adenosine could be excluded, as AMP admixed with adenosine desaminase (ADA) was still able to influence DC function. In summary our data show that AMP when present during maturation is a potent regulator of dendritic cell function and point out the role for AMP in the pathogenesis of inflammatory disorders.


Assuntos
Actinas/metabolismo , Monofosfato de Adenosina/metabolismo , Cálcio/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfócitos T/imunologia , Monofosfato de Adenosina/farmacologia , Análise de Variância , Animais , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polimerização/efeitos dos fármacos
11.
Am J Respir Crit Care Med ; 184(2): 215-23, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21512170

RESUMO

RATIONALE: Extracellular nucleotides have recently been identified as proinflammatory mediators involved in asthma pathogenesis by signaling via purinergic receptors, but the role of the purinergic receptor type 6 (P2Y6R) has not been previously investigated. OBJECTIVES: To investigate the role of P2Y6R in asthma pathogenesis. METHODS: Acute and chronic OVA model and also HDM model of allergic inflammation in C57Bl/6 mice treated with specific P2Y6R antagonist and P2Y6R(-/-) mice were evaluated for classical features of asthmatic inflammation. In addition, primary epithelial cell culture from human and epithelial cell lines from mouse and human were stimulated with P2Y6R agonist and treated with P2Y6R antagonist and assessed for IL-6, IL-8/CXCL8 and KC levels. Experiments with P2Y6R(-/-) and P2Y6R(+/+) chimera were performed to discriminate the role of P2Y6R activation in structural lung cells and in cells from hematopoietic system. MEASUREMENTS AND MAIN RESULTS: We observed that the intratracheal application of a P2Y6R antagonist (MRS2578) and P2Y6R deficiency inhibited cardinal features of asthma, such as bronchoalveolar lavage eosinophilia, airway remodeling, Th2 cytokine production, and bronchial hyperresponsiveness in the ovalbumin-alum model. MRS2578 was also effective in reducing airway inflammation in a model using house dust mite extracts to induce allergic lung inflammation. Experiments with bone marrow chimeras revealed the importance of the P2Y6R expression on lung structural cells in airway inflammation. In accordance with this finding, we found a strong up-regulation of P2Y6 expression on airway epithelial cells of animals with experimental asthma. Concerning the underlying mechanism, we observed that MRS2578 inhibited the release of IL-6 and IL-8/KC by lung epithelial cells in vivo, whereas intrapulmonary application of the P2Y6R agonist uridine-5'-diphosphate increased the bronchoalveolar levels of IL-6 and KC. In addition, selective activation of P2Y6 receptors induced the release of IL-6 and KC/IL-8 by murine and human lung epithelial cells in vitro. CONCLUSIONS: P2Y6R expression on airway epithelial cells is up-regulated during acute and chronic allergic airway inflammation, and selective blocking of P2Y6R or P2Y6R deficiency on the structural cells reduces cardinal features of experimental asthma. Thus, blocking pulmonary P2Y6R might be a target for the treatment of allergic airway inflammation.


Assuntos
Remodelação das Vias Aéreas/imunologia , Inflamação/imunologia , Pulmão/imunologia , Receptores Purinérgicos/imunologia , Hipersensibilidade Respiratória/imunologia , Compostos de Alúmen , Análise de Variância , Animais , Células Cultivadas , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina
12.
Am J Respir Cell Mol Biol ; 44(4): 456-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20508067

RESUMO

P2X7R deficiency is associated with a less severe outcome in acute and chronic inflammatory disorders. Recently, we demonstrated that extracellular adenosine triphosphate is involved in the pathogenesis of asthma by modulating the function of dendritic cells (DCs). However, the role of the purinergic receptor subtype P2X7 is unknown. To elucidate the role of P2X7R in allergic airway inflammation (AAI) in vitro and in vivo, P2X7R expression was measured in lung tissue and immune cells of mice or in humans with allergic asthma. By using a specific P2X7R-antagonist and P2X7R-deficient animals, the role of this receptor in acute and chronic experimental asthma was explored. P2X7R was found to be up-regulated during acute and chronic asthmatic airway inflammation in mice and humans. In vivo experiments revealed the functional relevance of this finding because selective P2X7R inhibition or P2X7R deficiency was associated with reduced features of acute and chronic asthma in the ovalbumin-alum or HDM model of AAI. Experiments with bone marrow chimeras emphasized that P2X7R expression on hematopoietic cells is responsible for the proasthmatic effects of P2X7R signaling. In the DC-driven model of AAI, P2X7R-deficient DCs showed a reduced capacity to induce Th2 immunity in vivo. Up-regulation of P2X7R on BAL macrophages and blood eosinophils could be observed in patients with chronic asthma. Our data suggest that targeting P2X7R on hematopoietic cells (e.g., DCs or eosinophils) might be a new therapeutic option for the treatment of asthma.


Assuntos
Asma/complicações , Asma/metabolismo , Pneumonia/complicações , Pneumonia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Doença Aguda , Trifosfato de Adenosina/farmacologia , Animais , Asma/imunologia , Asma/patologia , Células da Medula Óssea/citologia , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Doença Crônica , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Imunidade/efeitos dos fármacos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/patologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Pyroglyphidae/fisiologia , Receptores Purinérgicos P2X7/deficiência , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Regulação para Cima/efeitos dos fármacos
13.
Am J Respir Cell Mol Biol ; 44(3): 423-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20508069

RESUMO

Extracellular ATP is up-regulated in the airways of patients with chronic obstructive pulmonary disease, and may contribute to the pathogenesis of the disease. However, the precise mechanisms are poorly understood. Our objective was to investigate the functional role of the ATP receptor P2X(7) in the pathogenesis of cigarette smoke (CS)-induced lung inflammation and emphysema in vivo. Expression of the P2X(7) receptor (P2X(7)R) was measured in lung tissue und immune cells of mice with CS-induced lung inflammation. In a series of experiments using P2X(7) antagonists and genetically engineered mice, the functional role of the P2X(7)R in CS-induced lung inflammation was explored. CS-induced inflammation was associated with an up-regulation of the P2X(7)R on blood and airway neutrophils, alveolar macrophages, and in whole lung tissue. Selective intrapulmonary inhibition of the P2X(7)R reduced CS-induced lung inflammation and prevented the development of emphysema. Accordingly, P2X(7)R knockout mice showed a reduced pulmonary inflammation after acute CS exposure. Experiments with P2X(7)R chimera animals revealed that immune cell P2X(7)R expression plays an important role in CS-induced lung inflammation and emphysema. Extracellular ATP contributes to the development of CS-induced lung inflammation and emphysema via activation of the P2X(7)R. Inhibition of this receptor may be a new therapeutic target for the treatment of chronic obstructive pulmonary disease.


Assuntos
Enfisema/metabolismo , Inflamação/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fumaça , Fumar/efeitos adversos , Trifosfato de Adenosina/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
14.
Nat Med ; 16(12): 1434-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21102458

RESUMO

Danger signals released upon cell damage can cause excessive immune-mediated tissue destruction such as that found in acute graft-versus-host disease (GVHD), allograft rejection and systemic inflammatory response syndrome. Given that ATP is found in small concentrations in the extracellular space under physiological conditions, and its receptor P2X(7)R is expressed on several immune cell types, ATP could function as a danger signal when released from dying cells. We observed increased ATP concentrations in the peritoneal fluid after total body irradiation, and during the development of GVHD in mice and in humans. Stimulation of antigen-presenting cells (APCs) with ATP led to increased expression of CD80 and CD86 in vitro and in vivo and actuated a cascade of proinflammatory events, including signal transducer and activator of transcription-1 (STAT1) phosphorylation, interferon-γ (IFN-γ) production and donor T cell expansion, whereas regulatory T cell numbers were reduced. P2X(7)R expression increased when GVHD evolved, rendering APCs more responsive to the detrimental effects of ATP, thereby providing positive feedback signals. ATP neutralization, early P2X(7)R blockade or genetic deficiency of P2X(7)R during GVHD development improved survival without immune paralysis. These data have major implications for transplantation medicine, as pharmacological interference with danger signals that act via P2X(7)R could lead to the development of tolerance without the need for intensive immunosuppression.


Assuntos
Trifosfato de Adenosina/metabolismo , Espaço Extracelular/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Células Apresentadoras de Antígenos/metabolismo , Ascite/metabolismo , Líquido Ascítico/metabolismo , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Transplante de Medula Óssea , Citocinas/imunologia , Citometria de Fluxo , Trato Gastrointestinal/metabolismo , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fosforilação , Receptores Purinérgicos P2X7/genética , Fator de Transcrição STAT1/metabolismo , Linfócitos T Reguladores/imunologia , Irradiação Corporal Total
15.
Am J Respir Crit Care Med ; 181(9): 928-34, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20093639

RESUMO

RATIONALE: Extracellular ATP promotes inflammation, but its role in chronic obstructive pulmonary disease (COPD) is unknown. OBJECTIVES: To analyze the expression of ATP and its functional consequences in never-smokers, asymptomatic smokers, and patients with COPD. METHODS: ATP was quantified in bronchoalveolar lavage fluid (BALF) of never-smokers, asymptomatic smokers, and patients with COPD of different severity. The expression of specific ATP (purinergic) receptors was measured in airway macrophages and blood neutrophils from control subjects and patients with COPD. The release of mediators by macrophages and neutrophils and neutrophil chemotaxis was assessed after ATP stimulation. MEASUREMENTS AND MAIN RESULTS: Chronic smokers had elevated ATP concentrations in BALF compared with never-smokers. Acute smoke exposure led to a further increase in endobronchial ATP concentrations. Highest ATP concentrations in BALF were present in smokers and ex-smokers with COPD. In patients with COPD, BALF ATP concentrations correlated negatively with lung function and positively with BALF neutrophil counts. ATP induced a stronger chemotaxis and a stronger elastase release in blood neutrophils from patients with COPD, as compared with control subjects. In addition, airway macrophages from patients with COPD responded with an increased secretion of proinflammatory and tissue-degrading mediators after ATP stimulation. These findings were accompanied by an up-regulation of specific purinergic receptors in blood neutrophils and airway macrophages of patients with COPD. CONCLUSIONS: COPD is characterized by a strong and persistent up-regulation of extracellular ATP in the airways. Extracellular ATP appears to contribute to the pathogenesis of COPD by promoting inflammation and tissue degradation.


Assuntos
Trifosfato de Adenosina/análise , Doença Pulmonar Obstrutiva Crônica/metabolismo , Líquido da Lavagem Broncoalveolar/química , Citocinas/análise , Líquido Extracelular/química , Feminino , Humanos , Macrófagos Alveolares/química , Masculino , Pessoa de Meia-Idade , Neutrófilos/química , Receptores Purinérgicos/análise , Sarcoidose/metabolismo , Fumar/metabolismo , Regulação para Cima
16.
PLoS One ; 4(7): e6453, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19649285

RESUMO

Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR(1) and 5-HTR(2) receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR(3), 5-HTR(4) and 5-HTR(7) receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders.


Assuntos
Movimento Celular/fisiologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Dendríticas/imunologia , Serotonina/fisiologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Células Dendríticas/citologia , Humanos , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA