Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(15)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37566068

RESUMO

Vascular smooth muscle voltage-gated potassium (Kv) channels have been proposed to contribute to myogenic autoregulation. Surprisingly, in initial experiments, we observed that the Kv2 channel inhibitor stromatoxin induced vasomotion without affecting myogenic tone. Thus, we tested the hypothesis that Kv2 channels contribute to myogenic autoregulation by fine-tuning the myogenic response. Expression of Kv2 channel mRNA was determined using real-time PCR and 'multiplex' single-cell RT-PCR. Potassium currents were measured using the patch-clamp technique. Contractile responses of intact arteries were studied using isobaric myography. Expression of Kv2.1 but not Kv2.2 channels was detected in intact rat superior cerebellar arteries and in single smooth muscle cells. Stromatoxin, a high-affinity inhibitor of Kv2 channels, reduced smooth muscle Kv currents by 61% at saturating concentrations (EC50 36 nmol/L). Further, stromatoxin (10-100 nmol/L) induced pronounced vasomotion in 48% of the vessels studied. In vessels not exhibiting vasomotion, stromatoxin did not affect myogenic reactivity. Notably, in vessels exhibiting stromatoxin-induced vasomotion, pressure increases evoked two effects: First, they facilitated the occurrence of random vasodilations and/or vasoconstrictions, disturbing the myogenic response (24% of the vessels). Second, they modified the vasomotion by decreasing its amplitude and increasing its frequency, thereby destabilizing myogenic tone (76% of the vessels). Our study demonstrates that (i) Kv2.1 channels are the predominantly expressed Kv channels in smooth muscle cells of rat superior cerebellar arteries, and (ii) Kv2.1 channels provide a novel type of negative feedback mechanism in myogenic autoregulation by preventing vasomotion and thereby safeguarding the myogenic response.


Assuntos
Artérias , Canais de Potássio Shab , Animais , Ratos , Artérias/metabolismo , Potássio/metabolismo , Ratos Sprague-Dawley , Canais de Potássio Shab/metabolismo , Vasoconstrição
2.
Front Cardiovasc Med ; 10: 1157571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342445

RESUMO

Background: We investigated the association between leukocyte telomere length, mitochondrial DNA copy number, and endothelial function in patients with aging-related cardiovascular disease (CVD). Methods: In total 430 patients with CVD and healthy persons were enrolled in the current study. Peripheral blood was drawn by routine venipuncture procedure. Plasma and peripheral blood mononuclear cells (PBMCs) were collected. Cell-free genomic DNA (cfDNA) and leukocytic genomic DNA (leuDNA) were extracted from plasma and PBMCs, respectively. Relative telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN) were analyzed using quantitative polymerase chain reaction. Endothelial function was evaluated by measuring flow-mediated dilation (FMD). The correlation between TL of cfDNA (cf-TL), mtDNA-CN of cfDNA (cf-mtDNA), TL of leuDNA (leu-TL), mtDNA-CN of leuDNA (leu-mtDNA), age, and FMD were analyzed based on Spearman's rank correlation. The association between cf-TL, cf-mtDNA, leu-TL, leu-mtDNA, age, gender, and FMD were explored using multiple linear regression analysis. Results: cf-TL positively correlated with cf-mtDNA (r = 0.1834, P = 0.0273), and leu-TL positively correlated with leu-mtDNA (r = 0.1244, P = 0.0109). In addition, both leu-TL (r = 0.1489, P = 0.0022) and leu-mtDNA (r = 0.1929, P < 0.0001) positively correlated with FMD. In a multiple linear regression analysis model, both leu-TL (ß = 0.229, P = 0.002) and leu-mtDNA (ß = 0.198, P = 0.008) were positively associated with FMD. In contrast, age was inversely associated with FMD (ß = -0.426, P < 0.0001). Conclusion: TL positively correlates mtDNA-CN in both cfDNA and leuDNA. leu-TL and leu-mtDNA can be regarded as novel biomarkers of endothelial dysfunction.

3.
Antioxidants (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237992

RESUMO

This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins ß-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.

4.
Front Physiol ; 14: 1099278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057180

RESUMO

Stretch-induced vascular tone is an important element of autoregulatory adaptation of cerebral vasculature to maintain cerebral flow constant despite changes in perfusion pressure. Little is known as to the regulation of tone in senescent basilar arteries. We tested the hypothesis, that thin filament mechanisms in addition to smooth muscle myosin-II regulatory-light-chain-(MLC20)-phosphorylation and non-muscle-myosin-II, contribute to regulation of stretch-induced tone. In young BAs (y-BAs) mechanical stretch does not lead to spontaneous tone generation. Stretch-induced tone in y-BAs appeared only after inhibition of NO-release by L-NAME and was fully prevented by treatment with 3 µmol/L RhoA-kinase (ROK) inhibitor Y27632. L-NAME-induced tone was reduced in y-BAs from heterozygous mice carrying a point mutation of the targeting-subunit of the myosin phosphatase, MYPT1 at threonine696 (MYPT1-T696A/+). In y-BAs, MYPT1-T696A-mutation also blunted the ability of L-NAME to increase MLC20-phosphorylation. In contrast, senescent BAs (s-BAs; >24 months) developed stable spontaneous stretch-induced tone and pharmacological inhibition of NO-release by L-NAME led to an additive effect. In s-BAs the MYPT1-T696A mutation also blunted MLC20-phosphorylation, but did not prevent development of stretch-induced tone. In s-BAs from both lines, Y27632 completely abolished stretch- and L-NAME-induced tone. In s-BAs phosphorylation of non-muscle-myosin-S1943 and PAK1-T423, shown to be down-stream effectors of ROK was also reduced by Y27632 treatment. Stretch- and L-NAME tone were inhibited by inhibition of non-muscle myosin (NM-myosin) by blebbistatin. We also tested whether the substrate of PAK1 the thin-filament associated protein, caldesmon is involved in the regulation of stretch-induced tone in advanced age. BAs obtained from heterozygotes Cald1+/- mice generated stretch-induced tone already at an age of 20-21 months old BAs (o-BA). The magnitude of stretch-induced tone in Cald1+/- o-BAs was similar to that in s-BA. In addition, truncation of caldesmon myosin binding Exon2 (CaD-▵Ex2-/-) did not accelerate stretch-induced tone. Our study indicates that in senescent cerebral vessels, mechanisms distinct from MLC20 phosphorylation contribute to regulation of tone in the absence of a contractile agonist. While in y-and o-BA the canonical pathways, i.e., inhibition of MLCP by ROK and increase in pMLC20, predominate, tone regulation in senescence involves ROK regulated mechanisms, involving non-muscle-myosin and thin filament linked mechanisms involving caldesmon.

5.
J Hypertens ; 41(7): 1201-1214, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115907

RESUMO

OBJECTIVE: Small arteries from different organs vary with regard to the mechanisms that regulate vasoconstriction. This study investigated the impact of advanced age on the regulation of vasoconstriction in isolated human small arteries from kidney cortex and periintestinal mesenteric tissue. METHODS: Renal and mesenteric tissues were obtained from patients (mean age 71 ±â€Š9 years) undergoing elective surgery. Furthermore, intrarenal and mesenteric arteries from young and aged mice were studied. Arteries were investigated by small vessel myography and western blot. RESULTS: Human intrarenal arteries (h-RA) showed higher stretch-induced tone and higher reactivity to α 1 adrenergic receptor stimulation than human mesenteric arteries (h-MA). Rho-kinase (ROK) inhibition resulted in a greater decrease in Ca 2+ and depolarization-induced tone in h-RA than in h-MA. Basal and α 1 adrenergic receptor stimulation-induced phosphorylation of the regulatory light chain of myosin (MLC 20 ) was higher in h-RA than in h-MA. This was associated with higher ROK-dependent phosphorylation of the regulatory subunit of myosin light-chain-phosphatase (MLCP), MYPT1-T853. In h-RA phosphorylation of ribosomal S6-kinase II (RSK2-S227) was significantly higher than in h-MA. Stretch-induced tone and RSK2 phosphorylation was also higher in interlobar arteries (m-IAs) from aged mice than in respective vessels from young mice and in murine mesenteric arteries (m-MA) from both age groups. CONCLUSION: Vasoconstriction in human intrarenal arteries shows a greater ROK-dependence than in mesenteric arteries. Activation of RSK2 may contribute to intrarenal artery tone dysregulation associated with aging. Compared with h-RA, h-MA undergo age-related remodeling leading to a reduction of the contractile response to α 1 adrenergic stimulation.


Assuntos
Receptores Adrenérgicos alfa 1 , Quinases Associadas a rho , Humanos , Camundongos , Animais , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Quinases Associadas a rho/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Artérias Mesentéricas/metabolismo , Transdução de Sinais , Vasoconstrição , Miosinas/metabolismo , Fosforilação , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo
6.
Basic Clin Pharmacol Toxicol ; 130(1): 70-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34665520

RESUMO

This work explored the mechanism of augmented stress-induced vascular reactivity of senescent murine femoral arteries (FAs). Mechanical and pharmacological reactivity of young (12-25 weeks, y-FA) and senescent (>104 weeks, s-FAs) femoral arteries was measured by wire myography. Expression and protein phosphorylation of selected regulatory proteins were studied by western blotting. Expression ratio of the Exon24 in/out splice isoforms of the regulatory subunit of myosin phosphatase, MYPT1 (MYPT1-Exon24 in/out), was determined by polymerase chain reaction (PCR). While the resting length-tension relationship showed no alteration, the stretch-induced-tone increased to 8.3 ± 0.9 mN in s-FA versus only 4.6 ± 0.3 mN in y-FAs. Under basal conditions, phosphorylation of the regulatory light chain of myosin at S19 was 19.2 ± 5.8% in y-FA versus 49.2 ± 12.6% in s-FA. Inhibition of endogenous NO release raised tone additionally to 10.4 ± 1.2 mN in s-FA, whereas this treatment had a negligible effect in y-FAs (4.8 ± 0.3 mN). In s-FAs, reactivity to NO donor was augmented (pD2  = -4.5 ± 0.3 in y-FA vs. -5.2 ± 0.1 in senescent). Accordingly, in s-FAs, MYPT1-Exon24-out-mRNA, which is responsible for expression of the more sensitive to protein-kinase G, leucine-zipper-positive MYPT1 isoform, was increased. The present work provides evidence that senescent murine s-FA undergoes vascular remodelling associated with increases in stretch-activated contractility and sensitivity to NO/cGMP/PKG system.


Assuntos
Artéria Femoral/metabolismo , Óxido Nítrico/metabolismo , Estresse Fisiológico/fisiologia , Remodelação Vascular/fisiologia , Fatores Etários , Animais , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fosforilação , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Rigidez Vascular/fisiologia
7.
Front Cardiovasc Med ; 9: 981333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36818914

RESUMO

Background: We investigated the pleiotropic effects of an angiotensin receptor-neprilysin inhibitor (ARNi) on collateral-dependent myocardial perfusion in a rat model of coronary arteriogenesis, and performed comprehensive analyses to uncover the underlying molecular mechanisms. Methods: A rat model of coronary arteriogenesis was established by implanting an inflatable occluder on the left anterior descending coronary artery followed by a 7-day repetitive occlusion procedure (ROP). Coronary collateral perfusion was measured by using a myocardial particle infusion technique. The putative ARNi-induced pro-arteriogenic effects were further investigated and compared with an angiotensin-converting enzyme inhibitor (ACEi). Expression of the membrane receptors and key enzymes in the natriuretic peptide system (NPS), renin-angiotensin-aldosterone system (RAAS) and kallikrein-kinin system (KKS) were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblot assay, respectively. Protein levels of pro-arteriogenic cytokines were measured by enzyme-linked immunosorbent assay, and mitochondrial DNA copy number was assessed by qPCR due to their roles in arteriogenesis. Furthermore, murine heart endothelial cells (MHEC5-T) were treated with a neprilysin inhibitor (NEPi) alone, or in combination with bradykinin receptor antagonists. MHEC5-T proliferation was analyzed by colorimetric assay. Results: The in vivo study showed that ARNis markedly improved coronary collateral perfusion, regulated the gene expression of KKS, and increased the concentrations of relevant pro-arteriogenic cytokines. The in vitro study demonstrated that NEPis significantly promoted MHEC5-T proliferation, which was diminished by bradykinin receptor antagonists. Conclusion: ARNis improve coronary collateral perfusion and exert pro-arteriogenic effects via the bradykinin receptor signaling pathway.

8.
J Cell Mol Med ; 25(16): 7631-7641, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34156149

RESUMO

Under healthy conditions, foot processes of neighbouring podocytes are interdigitating and connected by an electron-dense slit diaphragm. Besides slit diaphragm proteins, typical adherens junction proteins are also found to be expressed at this cell-cell junction. It is therefore considered as a highly specialized type of adherens junction. During podocyte injury, podocyte foot processes lose their characteristic 3D structure and the filtration slits typical meandering structure gets linearized. It is still under debate how this change of structure leads to the phenomenon of proteinuria. Using super-resolution 3D-structured illumination microscopy, we observed a spatially restricted up-regulation of the tight junction protein claudin-5 (CLDN5) in areas where podocyte processes of patients suffering from minimal change disease (MCD), focal and segmental glomerulosclerosis (FSGS) as well as in murine nephrotoxic serum (NTS) nephritis and uninephrectomy DOCA-salt hypertension models, were locally injured. CLDN5/nephrin ratios in human glomerulopathies and NTS-treated mice were significantly higher compared to controls. In patients, the CLDN5/nephrin ratio is significantly correlated with the filtration slit density as a foot process effacement marker, confirming a direct association of local CLDN5 up-regulation in injured foot processes. Moreover, CLDN5 up-regulation was observed in some areas of high filtration slit density, suggesting that CLND5 up-regulation preceded the changes of foot processes. Therefore, CLDN5 could serve as a biomarker predicting early foot process effacement.


Assuntos
Claudina-5/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Nefropatias/patologia , Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Podócitos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Nefropatias/metabolismo , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Podócitos/metabolismo
9.
Gen Physiol Biophys ; 39(2): 157-168, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32329443

RESUMO

Cerebral blood supply is finely tuned by regulatory mechanisms depending on vessel caliber the disruption of which contributes to the development of diseases such as vascular dementia, Alzheimer's and Parkinson 's diseases. This study scopes whether cAMP-mimetic-ligands relax young and aged murine cerebral arteries, whether this relates to the activation of PKA or Epac signaling pathways and is changed with advanced age. The hormone Urocortin-1 relaxed submaximally contracted young and old basilar arteries with a similar pD2 and DMAX (~ -8.5 and ~ 90% in both groups). In permeabilized arteries, PKA activation by 6-Bnz-cAMP or Epac activation by 8-pCPT-2'- O-Me-cAMP also induced relaxation with pD2 of -6.3 vs. -5.8 in old for PKA-ligands, and -4.4 and -4.0 in old for Epac-ligands. Furthermore, aging significantly increased submaximal Ca2+-induced force. The effect of 8-pCPT-2'-O-Me-cAMP on intact arteries was attenuated by aging or nitric oxide synthase inhibition. No relaxing effect in both age-groups was observed after treatment with PKAactivator, Sp-6-Phe-cAMPS. In conclusion, our results suggest that in intact basilar arteries relaxation induced by cAMP-mimetics refers only to the activation of Epac and is impaired by smooth muscle and endothelial aging. The study presents an interesting option allowing therapeutic discrimination between both pathways, possibly for the exclusive activation of Epac in brain circulatory system.


Assuntos
Envelhecimento , Artéria Basilar/fisiologia , AMP Cíclico/fisiologia , Endotélio/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Vasodilatação , Animais , Permeabilidade da Membrana Celular , AMP Cíclico/análogos & derivados , Proteínas Quinases Dependentes de AMP Cíclico , Camundongos , Músculo Liso/fisiologia
10.
Acta Physiol (Oxf) ; 228(2): e13404, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31610091

RESUMO

Acute kidney injury (AKI) is frequently accompanied by activation of the sympathetic nervous system (SNS). This may result from pre-exisiting chronic diseases associated with sympathetic activation prior to AKI or it may be induced by stressors that ultimately lead to AKI such as endotoxins and arterial hypotension in circulatory shock. Conversely, sympathetic activation may also result from acute renal injury. Focusing on studies in experimental renal ischaemia and reperfusion (IR), this review summarizes the current knowledge on how the SNS is activated in IR-induced AKI and on the consequences of sympathetic activation for the development of acute renal damage. Experimental studies show beneficial effects of sympathoinhibitory interventions on renal structure and function in response to IR. However, few clinical trials obtained in scenarios that correspond to experimental IR, namely major elective surgery, showed that peri-operative treatment with centrally acting sympatholytics reduced the incidence of AKI. Apparently, discrepant findings on how sympathetic activation influences renal responses to acute IR-induced injury are discussed and future areas of research in this field are identified.


Assuntos
Injúria Renal Aguda/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Simpatolíticos/farmacologia , Injúria Renal Aguda/tratamento farmacológico , Animais , Humanos
11.
Front Med (Lausanne) ; 5: 292, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425988

RESUMO

Since the size selectivity of the filtration barrier and kidney function are highly dependent on podocyte foot process morphology, visualization of foot processes is important. However, the size of foot processes is below the optical resolution of light microscopy. Therefore, electron microcopy has been indispensable to detect changes in foot process morphology so far, but it is a sophisticated and time-consuming technique. Recently, our group has shown that 3D structured illumination microscopy (3D-SIM), a super-resolution microscopy (SRM) technique, can visualize individual foot processes in human biopsies. Moreover, we have developed a software-based approach to directly quantify the structure of podocyte foot processes named Podocyte Exact Morphology Measurement Procedure (PEMP). As shown in patients suffering from minimal change disease (MCD), PEMP allows the quantification of changes of the foot process morphology by measuring the filtration slit density (FSD). Since rodents are frequently used in basic research, we have applied PEMP to quantify foot processes of mice and rats. Comparative analysis of nephrin-stained kidneys from humans, rats, and mice showed significant differences of the FSD. The highest FSD was measured in mice (3.83 ± 0.37 µm-1; mean ± SD) followed by rats (3.36 ± 0.42 µm-1) and humans (3.11 ± 0.26 µm-1). To demonstrate that PEMP can be used to determine foot process morphology also in affected animals, we measured the FSD in palladin-knockout mice on a 129S1 genetic background compared to wild-type littermates. Taken together, we established a method for the quick and exact quantification of podocyte foot process morphology which can be applied to diagnosis and basic research.

12.
J Am Heart Assoc ; 7(18): e009557, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30371202

RESUMO

Background The tyrosine kinase inhibitor sunitinib causes hypertension associated with reduced nitric oxide (NO) availability, elevated renal vascular resistance, and decreased fractional sodium excretion. We tested whether (1) nitrate supplementation mitigates sunitinib-induced hypertension and NO contributes less to renal vascular resistance as well as fractional sodium excretion regulation in sunitinib-treated rats than in controls; and (2) renal soluble guanylate cyclase (sGC) is downregulated and sGC activation lowers arterial pressure in rats with sunitinib-induced hypertension. Methods and Results Arterial pressure responses to nitrate supplementation and the effects of systemic and intrarenal NO synthase (NOS) inhibition on renal hemodynamics and fractional sodium excretion were assessed in sunitinib-treated rats and controls. Renal NOS and sGC mRNA as well as protein abundances were determined by quantitative polymerase chain reaction and Western blot. The effect of the sGC activator cinaciguat on arterial pressure was investigated in sunitinib-treated rats. Nitrate supplementation did not mitigate sunitinib-induced hypertension. Endothelium-dependent reductions in renal vascular resistance were similar in control and sunitinib-treated animals without and with systemic NOS inhibition. Selective intrarenal NOS inhibition lowered renal medullary blood flow in control but not in sunitinib-treated rats without significant effects on fractional sodium excretion. Renal cortical sGC mRNA and sGC α1-subunit protein abundance were less in sunitinib-treated rats than in controls, and cinaciguat effectively lowered arterial pressure by 15-20 mm Hg in sunitinib-treated rats. Conclusions Renal cortical sGC is downregulated in the presence of intact endothelium-dependent renal vascular resistance regulation in developing sunitinib-induced hypertension. This suggests that sGC downregulation occurs outside the renal vasculature, increases renal sodium retention, and contributes to nitrate resistance of sunitinib-induced hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Regulação para Baixo , Guanilato Ciclase/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Circulação Renal/fisiologia , Animais , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Rim/fisiopatologia , Masculino , Ratos , Ratos Wistar , Sunitinibe/toxicidade , Resistência Vascular/fisiologia
13.
J Hypertens ; 36(4): 892-903, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29283974

RESUMO

OBJECTIVE: Antiangiogenic receptor tyrosine kinase inhibitors (RTKI) induce arterial hypertension which may limit their use. Renal fractional sodium excretion (FENa) is reduced in early RTKI-induced hypertension, whereas fractional lithium excretion is unaltered. Therefore, we tested the hypothesis that activated distal tubule and collecting duct sodium reabsorption contributes to RTKI-induced hypertension. METHODS: Amiloride-sensitive and hydrochlorothiazide (HCTZ)-sensitive fractional sodium reabsorption (FRNa) and renal epithelial sodium channel (ENaC) as well as sodium chloride cotransporter (NCC) abundances were determined in sunitinib-treated and control rats. The antihypertensive effects of amiloride and HCTZ were investigated by radiotelemery. RESULTS: After 4 days of treatment, mean arterial pressure was 20 mmHg higher, FENa was lower (0.32 ±â€Š0.08% vs. 0.65 ±â€Š0.14%; P < 0.05), and renal medullary-ENaC protein abundance was higher in sunitinib-treated rats than in controls. Amiloride-sensitive FRNa was 2.37 ±â€Š0.52% in sunitinib-treated rats vs. 2.66 ±â€Š0.44% in controls (n.s.). HCTZ increased FENa by a similar magnitude without affecting amiloride-sensitive FRNa in both groups. After 14 days of treatment, renal medullary ß-ENaC protein abundance was higher in rats that received sunitinib than in controls, whereas α-ENaC, γ-ENaC, and NCC abundances were similar in both groups. Amiloride and HCTZ reduced the sunitinib-induced mean arterial pressure rise by 8 ±â€Š3 mmHg (P < 0.05) and 12 ±â€Š2 mmHg (P < 0.05), respectively, without additive effects when combined. CONCLUSION: ENaC-dependent and thiazide-sensitive sodium-retaining mechanisms are not overactive in sunitinib-induced hypertension but ENaC blockers and in particular thiazides may be suitable for its treatment.


Assuntos
Hipertensão/induzido quimicamente , Túbulos Renais Coletores/metabolismo , Túbulos Renais Distais/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Sódio/metabolismo , Sunitinibe/efeitos adversos , Amilorida/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Hidroclorotiazida/farmacologia , Hipertensão/fisiopatologia , Medula Renal/metabolismo , Masculino , Ratos , Simportadores de Cloreto de Sódio/metabolismo
14.
15.
Shock ; 48(3): 333-339, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28362714

RESUMO

OBJECTIVE: Nonocclusive mesenteric ischemia (NOMI) is accompanied by mesenteric artery spasms that are at least in part due to endothelin system activation. Acute treatment includes intra-arterial infusion of vasodilators such as iloprost, prostaglandin E1 (PGE1), and papaverine. Their effectiveness is not well characterized in human mesenteric arteries. We directly compared their potency to relax isolated human mesenteric arteries. To explore the potential of Rock inhibition to treat mesenteric artery spasms, we tested if endothelin-1 (ET-1)-induced mesenteric artery constrictions depend on rho kinase (Rock). METHODS: Mesenteric artery segments were obtained from patients who underwent elective abdominal surgery. Vasodilator concentration-response curves were recorded from ET-1-preconstricted vessels by small vessel myography. Rock expression was investigated by Western blot and the potency of Rock inhibition to blunt ET-1-induced mesenteric artery constriction was tested. RESULTS: Iloprost, PGE1, and papaverine similarly reduced vascular tone to 20% to 30% of ET-1-induced wall tension. In human mesenteric arteries, logEC50 was significantly less for iloprost than for PGE1 or papaverine. Respective logEC50 values were -7.72 ±â€Š0.08 mol/L, -6.58 ±â€Š0.17 mol/L, and -6.73 ±â€Š0.19 mol/L in 150 µm to 300 µm lumen diameter arteries. These vessels were also more sensitive to iloprost than 500 µm to 1,000 µm lumen diameter arteries (logEC50 -7.29 ±â€Š0.07 mol/L). Rock1 and Rock2 were expressed in human mesenteric arteries but Rock inhibition did not significantly affect ET-1-induced vasoconstrictions. CONCLUSIONS: Iloprost, PGE1, and papaverine have a similar potency to relax mesenteric arteries. Our data suggest that iloprost but not Rock inhibition may be particularly useful to treat ET-1-induced spasms of distal mesenteric arteries.


Assuntos
Alprostadil/farmacologia , Iloprosta/farmacologia , Artérias Mesentéricas/fisiopatologia , Isquemia Mesentérica/metabolismo , Papaverina/farmacologia , Vasodilatação/efeitos dos fármacos , Idoso , Endotelina-1/metabolismo , Feminino , Humanos , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Isquemia Mesentérica/patologia , Isquemia Mesentérica/fisiopatologia , Isquemia Mesentérica/terapia , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Quinases Associadas a rho/metabolismo
16.
Auton Neurosci ; 204: 119-125, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27503342

RESUMO

Increased renal sympathetic nerve activity (RSNA) is present in human and experimental forms of arterial hypertension. Experimental denervation studies showed that renal nerves contribute to the development of hypertension. Clinical trials provided equivocal results on the antihypertensive efficacy of renal denervation in patients spurring discussions on technical aspects of renal denervation and further research on the role of renal nerves for the regulation of kidney function as well as the pathophysiology of hypertension. This review summarizes recent findings on adrenoceptor expression and function in the human kidney, adrenoceptor-dependent regulation of sodium chloride transport in the distal nephron, experimental data on chronic RSNA and the development of high arterial pressure and consequences of renal denervation that may limit its antihypertensive efficacy. Future research needs to reduce the gap between our knowledge on neural control of renal function in animals vs. humans to facilitate translation of experimental animal data to humans. More experimental studies on the temporal relationship between RSNA and arterial pressure in the chronic setting are needed to better define the pathogenetic role of heightened RSNA in different forms of arterial hypertension in order to improve the rational basis for renal denervation in antihypertensive therapy. Finally, research on unintended consequences of renal denervation including but not limited to reinnervation and denervation supersensitivity needs to be intensified to further assess the potential of renal denervation to slow the progression of renal disease and hypertension.


Assuntos
Denervação , Hipertensão/fisiopatologia , Hipertensão/cirurgia , Rim/inervação , Animais , Humanos , Rim/metabolismo , Rim/cirurgia , Receptores Adrenérgicos/metabolismo
17.
Pflugers Arch ; 468(8): 1467-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27290617

RESUMO

Endothelin-1 (ET-1) stimulates contractions in isolated rat renal pelves. The signal transduction mechanisms that mediate ET-1-induced renal pelvic contractions and the role of ET-1 for the in vivo regulation of renal pelvic function are not well characterized. We tested if ET-1 stimulates contractions in murine and human renal pelves, if ET-1 activates the renal pelvic RhoA/ROCK pathway, and if low renal ET-1 formation or ET receptor blockade reduce renal pelvic contractile activity. ET-1 increased contraction frequency and force in murine renal pelves. The majority of human renal pelvic tissue samples showed tonic contractions in response to ET-1. Seven out of 20 human tissue samples showed phasic contractions. In four samples, they were elicited by ET-1 at 10-33 nmol/l. ET-1 increased renal pelvic RhoA-GTP content and myosin phosphatase target subunit 1 phosphorylation in isolated rat renal pelves. Renal pelvic contraction frequency (29 ± 2 vs. 29 ± 3 min(-1)) and renal pelvic pressure (7.1 ± 0.9 vs. 5.9 ± 1.7 mmHg) were similar in collecting duct-specific ET-1 knockout mice and in ET-1 floxed controls in vivo. ET-1 sensitivity of isolated renal pelves was similar in both groups. ET receptor blockade did not significantly affect pelvic contraction frequency and pressure in rats. We conclude that ET-1 stimulates phasic contractions in murine, rat, and, to a lesser extent, in human renal pelves. ET-1 activates the RhoA/ROCK pathway in the renal pelvic wall. Endogenous, kidney-derived ET-1 does not play a major role for the regulation of renal pelvic contractions in vivo.


Assuntos
Endotelina-1/metabolismo , Pelve Renal/metabolismo , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Ratos , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
18.
J Hypertens ; 34(4): 692-703, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26841239

RESUMO

OBJECTIVES: Sympathetic denervation enhances agonist-induced vasoconstriction. This effect may involve altered function of signaling mechanisms such as Rho kinase (Rock) and L-type Ca channels downstream from vasoconstrictor receptors. We tested if enhanced Rock and L-type calcium channel activation contribute to exaggerated norepinephrine-induced vasoconstrictions in renal and mesenteric resistance arteries after sympathectomy. METHODS: Rats underwent neonatal sympathectomy or sham sympathectomy. Resistance arteries were investigated by small vessel myography. Vascular Rock and L-type Ca channel expression as well as Rock activation were investigated by quantitative real-time PCR and Western blot. Vascular smooth muscle cell (VSMC) membrane potential was recorded with microelectrodes. RESULTS: Sympathetic denervation enhanced norepinephrine sensitivity in renal and mesenteric arteries. Both, Rock inhibition or L-type Ca inhibition shifted the norepinephrine concentration-response curve to the right. This effect was more pronounced in renal than in mesenteric arteries from sympathectomized vs. sham-sympathectomized animals. The L-type Ca channel activator S-(-)-BayK8644 elicited strong vasoconstrictions only in renal arteries from sympathectomized rats. Rock activity and L-type Ca channel α-subunit expression were similar in renal arteries from sympathectomized and sham-sympathectomized animals. VSMC membrane potential was -57.5 ±â€Š2.0 and -64.3 ±â€Š0.3 mV (P < 0.01), respectively, in renal arteries from sympathectomized and from sham-sympathectomized rats. Depolarization enhanced and KATP channel activation abolished S-(-)-BayK8644-induced contractions in renal arteries from sympathectomized rats. CONCLUSION: Sympathetic denervation enhances L-type Ca channel-dependent signaling in renal but not in mesenteric arteries. This effect may be partly explained by the decreased VSMC membrane potential in denervated renal arteries.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Artérias Mesentéricas/fisiologia , Artéria Renal/fisiologia , Simpatectomia , Animais , Ratos
19.
J Hypertens ; 32(11): 2199-210; discussion 2110, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25275248

RESUMO

OBJECTIVES: The therapeutic use of the vascular endothelial growth factor (VEGF) antagonist sunitinib is limited by sunitinib-induced hypertension. The hypotheses were tested that sunitinib increases renal vascular resistance (RVR) and renal Na+ reabsorption, and that Rho kinase (ROCK) inhibition blunts sunitinib-induced hypertension. METHODS: Sunitinib actions on human and rat resistance arteries were investigated by myography. The effects of sunitinib alone or in combination with a ROCK inhibitor on arterial pressure and renal function were investigated in rats by radiotelemetry, renal function and metabolism studies accompanied by biochemical, molecular and histological analyses. RESULTS: Sunitinib blunted agonist-induced vasoconstriction and facilitated endothelium-dependent vasodilation. Within 4 days, sunitinib treatment caused arterial pressure and RVR to rise by 30 mmHg and 5 mmHg × ml × min × g kidney weight, respectively, accompanied by reduced glomerular filtration rate and fractional Na+ excretion with unaffected fractional Li+ excretion. ROCK inhibition blunted sunitinib-induced hypertension and prevented the early rise in RVR, but not the decrease in fractional Na+ excretion, which may explain its modest effect on sunitinib-induced hypertension. CONCLUSION: Our data indicate that early sunitinib-induced hypertension is associated with modest alterations in renal vascular function, but markedly increased renal sodium reabsorption, probably due to direct actions of the VEGF antagonist on the collecting duct, suggesting that VEGF receptors regulate renal Na+ absorption.


Assuntos
Antineoplásicos/efeitos adversos , Pressão Arterial/efeitos dos fármacos , Hipertensão/induzido quimicamente , Indóis/efeitos adversos , Túbulos Renais/efeitos dos fármacos , Pirróis/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores , Idoso , Animais , Antineoplásicos/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Feminino , Humanos , Hipertensão/enzimologia , Indóis/administração & dosagem , Túbulos Renais/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Pirróis/administração & dosagem , Ratos , Sódio/metabolismo , Sódio na Dieta/metabolismo , Sunitinibe , Resistência Vascular/efeitos dos fármacos , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA