Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 9(8): 8394-400, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26158314

RESUMO

A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.

2.
Nano Lett ; 15(7): 4793-8, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26098301

RESUMO

Surface-supported molecular motors are nanomechanical devices of particular interest in terms of future nanoscale applications. However, the molecular motors realized so far consist of covalently bonded groups that cannot be reconfigured without undergoing a chemical reaction. Here we demonstrate that a platinum-porphyrin-based supramolecularly assembled dimer supported on a Au(111) surface can be rotated with high directionality using the tunneling current of a scanning tunneling microscope (STM). Rotational direction of this molecular motor is determined solely by the surface chirality of the dimer, and most importantly, the chirality can be inverted in situ through a process involving an intradimer rearrangement. Our result opens the way for the construction of complex molecular machines on a surface to mimic at a smaller scale versatile biological supramolecular motors.

3.
Chem Commun (Camb) ; 51(32): 6932-5, 2015 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-25794244

RESUMO

A new disc-shaped highly symmetric C54H20 nanographene fragment, tetrabenzocircumpyrene, has been synthesized and characterized by scanning tunnelling microscopy, demonstrating the potential of this technique for identifying highly insoluble graphenic molecules.

4.
Langmuir ; 29(24): 7309-17, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23311621

RESUMO

The design of molecular systems as functional elements for use in next-generation electronic sensors and devices often relies on the addition of functional groups acting as spacers to modify adsorbate-substrate interactions. Although advantageous in many regards, these spacer groups have the secondary effect of amplifying internal conformational effects of the parent molecule. Here we investigate one such molecule-2,5,8,11,14,17-hexa-tert-butyl-decacyclene (HBDC, C60H66)-deposited on Cu(100) at monolayer and submonolayer coverages using an ultra-high vacuum (UHV) scanning tunneling microscope (STM). By combining submolecular resolution imaging with computational methods, we describe a variety of properties related to the effects of adding tert-butyl spacers to a decacyclene core, including the molecular conformation, structure, and chiral separation of the molecular adlayer, strong intermolecular interactions, and a metastable pinned conformation of the molecule brought on by deformation under high-bias conditions that enable an examination of its diffusive 2D molecular gas at room temperature. Collectively, these observations provide direct insight into the effect of adding spacers to a flexible molecular core such as decacyclene as relates to both intermolecular and adsorbate-substrate interfaces.

5.
ACS Nano ; 7(1): 191-7, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23199300

RESUMO

For the development of nanoscale devices, the manipulation of single atoms and molecules by scanning tunneling microscopy is a well-established experimental technique. However, for the construction of larger and higher order structures, it is important to move not only one adsorbate but also several at the same time. Additionally, a major issue in standard manipulation experiments is the strong mechanical interaction of the tip apex and the adsorbate, which can damage the system under investigation. Here, we present a purely electronic excitation method for the controlled movement of a weakly interacting assembly of a few molecules. By applying voltage pulses, this supramolecular nanostructure is moved in a controlled manner without losing its collective integrity. Depending on the polarity and location of the applied voltage, the movement can be driven in predefined directions. Our gentle purely electronic approach for the controlled manipulation of nanostructures opens new ways to construct molecular devices.


Assuntos
Micromanipulação/métodos , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Campos Eletromagnéticos , Teste de Materiais , Movimento (Física) , Nanoestruturas/ultraestrutura , Doses de Radiação
6.
ACS Nano ; 6(4): 3230-5, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22452387

RESUMO

Electronic states of a molecule are usually analyzed via their decomposition in linear superposition of multielectronic Slater determinants built up from monoelectronics molecular orbitals. It is generally believed that a scanning tunneling microscope (STM) is able to map those molecular orbitals. Using a low-temperature ultrahigh vacuum (LT-UHV) STM, the dI/dV conductance maps of large single hexabenzocoronene (HBC) monomer, dimer, trimer, and tetramer molecules were recorded. We demonstrate that the attribution of a tunnel electronic resonance to a peculiar π molecular orbital of the molecule (or σ intermonomer chemical bond) in the STM junction is inappropriate. With an STM weak-measurement-like procedure, a dI/dV resonance results from the conductance contribution of many molecular states whose superposition makes it difficult to reconstruct an apparent molecular orbital electron probability density map.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA