Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887036

RESUMO

There is a growing demand for molecules of natural origin for biocontrol and biostimulation, given the current trend away from synthetic chemical products. Leachates extracted from plantain stems were obtained after biodegradation of the plant material. To characterize the leachate, quantitative determinations of nitrogen, carbon, phosphorus, and cations (K+, Ca2+, Mg2+, Na+), Q2/4, Q2/6, and Q4/6 absorbance ratios, and metabolomic analysis were carried out. The potential role of plantain leachates as fungicide, elicitor of plant defense, and/or plant biostimulant was evaluated by agar well diffusion method, phenotypic, molecular, and imaging approaches. The plant extracts induced a slight inhibition of fungal growth of an aggressive strain of Colletotrichum gloeosporioides, which causes anthracnose. Organic compounds such as cinnamic, ellagic, quinic, and fulvic acids and indole alkaloid such as ellipticine, along with some minerals such as potassium, calcium, and phosphorus, may be responsible for the inhibition of fungal growth. In addition, jasmonic, benzoic, and salicylic acids, which are known to play a role in plant defense and as biostimulants in tomato, were detected in leachate extract. Indeed, foliar application of banana leachate induced overexpression of LOXD, PPOD, and Worky70-80 genes, which are involved in phenylpropanoid metabolism, jasmonic acid biosynthesis, and salicylic acid metabolism, respectively. Leachate also activated root growth in tomato seedlings. However, the main impact of the leachate was observed on mature plants, where it caused a reduction in leaf area and fresh weight, the remodeling of stem cell wall glycopolymers, and an increase in the expression of proline dehydrogenase.

2.
Biomolecules ; 13(10)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37892165

RESUMO

Laminarans are of interest because they have been shown to induce various immune responses in animals and plants. These ß-D-glucans differ from each other by their branching rate, which is possibly responsible for their biological activities. In the present study, we characterized a laminaran fraction extracted from Laminaria hyperborea and named LAM2 using sugar composition and structural analyses (NMR). Then, we evaluated its activity as a potential plant elicitor in vitro on tomato seedlings using gene expression analysis and cell wall immunofluorescence labeling. Our study showed that LAM2 isolated from L. hyperborea is a succinylated laminaran which significantly enhanced the plant defense of tomato seedlings and induced cell wall modifications, suggesting a higher elicitor activity than the laminaran standard extracted from Laminaria digitata.


Assuntos
Glucanos , Solanum lycopersicum , Glucanos/química , Solanum lycopersicum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA