Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 289: 117831, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358874

RESUMO

Microbial-mediated Sb volatilization is a poorly understood part of the Sb biogeochemical cycle. This is mostly due to a lack of laboratory and field-deployable methods that are capable of quantifying low-level emissions of Sb from diffuse sources. In this study, we validated two methods using a H2O2 -HNO3 liquid chemotrap and an activated coconut shell charcoal solid-phase trap, achieving an absolute limit of detection of 4.6 ng and below 2.0 ng Sb, respectively. The activated charcoal solid-phase trapping method, the most easily operated method, was then applied to contaminated shooting range soils. Four treatments were tested: 1) flooded, 2) manure amended + flooded, 3) 70 % water holding capacity, and 4) manure amendment +70 % water holding capacity, since agricultural practices and flooding events may contribute to Sb volatilization. Volatile Sb was only produced from flooded microcosms and manure amendment greatly influenced the onset and amount of volatile Sb produced. The highest amount of volatile Sb produced, up to 62.1 ng kg-1 d-1, was from the flooded manure amended soil. This suggests that anaerobic microorganisms may potentially be drivers of Sb volatilization. Our results show that polluted shooting range soils are a source of volatile Sb under flooded conditions, which may lead to an increase in the mobility of Sb. Some of these volatile Sb species are toxic and genotoxic, highlighting the role of Sb volatilization on environmental health, especially for individuals living in contaminated areas exposed to wetlands or flooded conditions (e.g., rice paddy agriculture surrounding mining areas). This work paves way for research on Sb volatilization in the environment.


Assuntos
Antimônio , Poluentes do Solo , Antimônio/análise , Humanos , Peróxido de Hidrogênio , Esterco , Solo , Poluentes do Solo/análise
2.
Phys Rev E ; 101(1-1): 012602, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069549

RESUMO

We analyze the flow curves of a two-dimensional assembly of granular particles which are interacting via frictional contact forces. For packing fractions slightly below jamming, the fluid undergoes a large scale instability, implying a range of stress and strain rates where no stationary flow can exist. Whereas small systems were shown previously to exhibit hysteretic jumps between the low and high stress branches, large systems exhibit continuous shear thickening arising from averaging unsteady, spatially heterogeneous flows. The observed large scale patterns as well as their dynamics are found to depend on strain rate: At the lower end of the unstable region, force chains merge to form giant bands that span the system in the compressional direction and propagate in the dilational direction. At the upper end, we observe large scale clusters which extend along the dilational direction and propagate along the compressional direction. Both patterns, bands and clusters, come in with infinite correlation length similar to the sudden onset of system-spanning plugs in impact experiments.

3.
Phys Rev E ; 93(3): 030901, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078280

RESUMO

A two-dimensional dense fluid of frictional grains is shown to exhibit time-chaotic, spatially heterogeneous flow in a range of stress values, σ, chosen in the unstable region of s-shaped flow curves. Stress-controlled simulations reveal a phase diagram with reentrant stationary flow for small and large stress σ. In between, no steady flow state can be reached, instead the system either jams or displays time-dependent heterogeneous strain rates γ(r,t). The results of simulations are in agreement with the stability analysis of a simple hydrodynamic model, coupling stress and microstructure which we tentatively associate with the frictional contact network.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25353726

RESUMO

We propose a phase diagram for the shear flow of dry granular particles in two dimensions based on simulations and a phenomenological Landau theory for a nonequilibrium first-order phase transition. Our approach incorporates both frictional as well as frictionless particles. The most important feature of the frictional phase diagram is reentrant flow and a critical jamming point at finite stress. In the frictionless limit the regime of reentrance vanishes and the jamming transition is continuous with a critical point at zero stress. The jamming phase diagrams derived from the model agree with the experiments of Bi et al. [Nature (London) 480, 355 (2011)] and brings together previously conflicting numerical results.

5.
Artigo em Inglês | MEDLINE | ID: mdl-24827243

RESUMO

When pulling a particle in a driven granular fluid with constant force Fex, the probe particle approaches a steady-state average velocity v. This velocity and the corresponding friction coefficient of the probe ζ=Fex/v are obtained within a schematic model of mode-coupling theory and compared to results from event-driven simulations. For small and moderate drag forces, the model describes the simulation results successfully for both the linear as well as the nonlinear region: The linear response regime (constant friction) for small drag forces is followed by shear thinning (decreasing friction) for moderate forces. For large forces, the model demonstrates a subsequent increasing friction in qualitative agreement with the data. The square-root increase of the friction with force found in [Fiege et al., Granul. Matter 14, 247 (2012)] is explained by a simple kinetic theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA