Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265145

RESUMO

The evolutionarily conserved apical Crumbs (CRB) complex, consisting of the core components CRB3a (an isoform of CRB3), PALS1 and PATJ, plays a key role in epithelial cell-cell contact formation and cell polarization. Recently, we observed that deletion of one Pals1 allele in mice results in functional haploinsufficiency characterized by renal cysts. Here, to address the role of PALS1 at the cellular level, we generated CRISPR/Cas9-mediated PALS1-knockout MDCKII cell lines. The loss of PALS1 resulted in increased paracellular permeability, indicating an epithelial barrier defect. This defect was associated with a redistribution of several tight junction-associated proteins from bicellular to tricellular contacts. PALS1-dependent localization of tight junction proteins at bicellular junctions required its interaction with PATJ. Importantly, reestablishment of the tight junction belt upon transient F-actin depolymerization or upon Ca2+ removal was strongly delayed in PALS1-deficient cells. Additionally, the cytoskeleton regulator RhoA was redistributed from junctions into the cytosol under PALS1 knockout. Together, our data uncover a critical role of PALS1 in the coupling of tight junction proteins to the F-actin cytoskeleton, which ensures their correct distribution along bicellular junctions and the formation of tight epithelial barrier.


Assuntos
Células Epiteliais , Proteínas de Membrana , Núcleosídeo-Fosfato Quinase , Proteínas de Junções Íntimas , Animais , Camundongos , Citoesqueleto de Actina , Actinas , Citoesqueleto , Citosol , Núcleosídeo-Fosfato Quinase/genética , Proteínas de Membrana/genética
2.
Front Mol Biosci ; 9: 792829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252349

RESUMO

Pals1 is part of the evolutionary conserved Crumbs polarity complex and plays a key role in two processes, the formation of apicobasal polarity and the establishment of cell-cell contacts. In the human kidney, up to 1.5 million nephrons control blood filtration, as well as resorption and recycling of inorganic and organic ions, sugars, amino acids, peptides, vitamins, water and further metabolites of endogenous and exogenous origin. All nephron segments consist of polarized cells and express high levels of Pals1. Mice that are functionally haploid for Pals1 develop a lethal phenotype, accompanied by heavy proteinuria and the formation of renal cysts. However, on a cellular level, it is still unclear if reduced cell polarization, incomplete cell-cell contact formation, or an altered Pals1-dependent gene expression accounts for the renal phenotype. To address this, we analyzed the transcriptomes of Pals1-haploinsufficient kidneys and the littermate controls by gene set enrichment analysis. Our data elucidated a direct correlation between TGFß pathway activation and the downregulation of more than 100 members of the solute carrier (SLC) gene family. Surprisingly, Pals1-depleted nephrons keep the SLC's segment-specific expression and subcellular distribution, demonstrating that the phenotype is not mainly due to dysfunctional apicobasal cell polarization of renal epithelia. Our data may provide first hints that SLCs may act as modulating factors for renal cyst formation.

3.
Mol Biol Evol ; 38(11): 4962-4976, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34323996

RESUMO

The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.


Assuntos
Apolipoproteína L1 , Retículo Endoplasmático , Animais , Apolipoproteína L1/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Camundongos , Filogenia , Primatas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA