Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Immunol ; 209(8): 1574-1585, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36165184

RESUMO

Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting ß2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced ß2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and ß2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.


Assuntos
Antígenos CD18 , Neutrófilos , Animais , Antígenos CD18/metabolismo , Cálcio/metabolismo , Adesão Celular , Guanosina , Guanosina Trifosfato/metabolismo , Humanos , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Polifosfatos , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Cell Syst ; 13(6): 488-498.e4, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512710

RESUMO

Biological systems ranging from bacteria to mammals utilize electrochemical signaling. Although artificial electrochemical signals have been utilized to characterize neural tissue responses, the effects of such stimuli on non-neural systems remain unclear. To pursue this question, we developed an experimental platform that combines a microfluidic chip with a multielectrode array (MiCMA) to enable localized electrochemical stimulation of bacterial biofilms. The device also allows for the simultaneous measurement of the physiological response within the biofilm with single-cell resolution. We find that the stimulation of an electrode locally changes the ratio of the two major cell types comprising Bacillus subtilis biofilms, namely motile and extracellular-matrix-producing cells. Specifically, stimulation promotes the proliferation of motile cells but not matrix cells, even though these two cell types are genetically identical and reside in the same microenvironment. Our work thus reveals that an electronic interface can selectively target bacterial cell types, enabling the control of biofilm composition and development.


Assuntos
Bacillus subtilis , Biofilmes , Bacillus subtilis/metabolismo , Proliferação de Células , Estimulação Elétrica , Matriz Extracelular/metabolismo
3.
J Leukoc Biol ; 111(4): 771-791, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34494308

RESUMO

Neutrophils are critical for inflammation and innate immunity, and their adhesion to vascular endothelium is a crucial step in neutrophil recruitment. Mitofusin-2 (MFN2) is required for neutrophil adhesion, but molecular details are unclear. Here, we demonstrated that ß2 -integrin-mediated slow-rolling and arrest, but not PSGL-1-mediated cell rolling, are defective in MFN2-deficient neutrophil-like HL60 cells. This adhesion defect is associated with reduced expression of fMLP (N-formylmethionyl-leucyl-phenylalanine) receptor FPR1 as well as the inhibited ß2 integrin activation, as assessed by conformation-specific monoclonal antibodies. MFN2 deficiency also leads to decreased actin polymerization, which is important for ß2 integrin activation. Mn2+ -induced cell spreading is also inhibited after MFN2 knockdown. MFN2 deficiency limited the maturation of ß2 integrin activation during the neutrophil-directed differentiation of HL60 cells, which is indicated by CD35 and CD87 markers. MFN2 knockdown in ß2-integrin activation-matured cells (CD87high population) also inhibits integrin activation, indicating that MFN2 directly affects ß2 integrin activation. Our study illustrates the function of MFN2 in leukocyte adhesion and may provide new insights into the development and treatment of MFN2 deficiency-related diseases.


Assuntos
Antígenos CD18 , Neutrófilos , Antígenos CD18/metabolismo , Adesão Celular , N-Formilmetionina Leucil-Fenilalanina , Infiltração de Neutrófilos
4.
Mol Syst Biol ; 17(12): e10505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898015

RESUMO

Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.


Assuntos
Actomiosina , Dictyostelium , Citoesqueleto de Actina , Actinas , Movimento Celular , Tração
5.
J Neurosci ; 41(49): 10034-10053, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34663629

RESUMO

Traumatic brain injury (TBI) results in disrupted brain function following impact from an external force and is a risk factor for sporadic Alzheimer's disease (AD). Although neurologic symptoms triggered by mild traumatic brain injuries (mTBI), the most common form of TBI, typically resolve rapidly, even an isolated mTBI event can increase the risk to develop AD. Aberrant accumulation of amyloid ß peptide (Aß), a cleaved fragment of amyloid precursor protein (APP), is a key pathologic outcome designating the progression of AD following mTBI and has also been linked to impaired axonal transport. However, relationships among mTBI, amyloidogenesis, and axonal transport remain unclear, in part because of the dearth of human models to study the neuronal response following mTBI. Here, we implemented a custom-microfabricated device to deform neurons derived from human-induced pluripotent stem cells, derived from a cognitively unimpaired male individual, to mimic the mild stretch experienced by neurons during mTBI. Although no cell lethality or cytoskeletal disruptions were observed, mild stretch was sufficient to stimulate rapid amyloidogenic processing of APP. This processing led to abrupt cessation of APP axonal transport and progressive formation of aberrant axonal accumulations that contained APP, its processing machinery, and amyloidogenic fragments. Consistent with this sequence of events, stretch-induced defects were abrogated by reducing amyloidogenesis either pharmacologically or genetically. In sum, we have uncovered a novel and manipulable stretch-induced amyloidogenic pathway directly responsible for APP axonal transport dysregulation. Our findings may help to understand and ultimately mitigate the risk of developing AD following mTBI.SIGNIFICANCE STATEMENT Mild traumatic brain injury is a risk factor for sporadic Alzheimer's disease (AD). Increased amyloid ß peptide generation after injury may drive this risk. Here, by using a custom-built device to impose mild stretch to human neurons, we found that stretch triggers amyloid precursor protein (APP) cleavage, and thus amyloid ß peptide generation, consequently disrupting APP axonal transport. Compellingly, protecting APP from cleavage was sufficient to spare axonal transport dysregulation and the consequent aberrant axonal accumulation of APP. Supporting such protective mechanism, the expression of the AD-protective APPA673T genetic variant conferred protection against stretch-induced APP axonal transport phenotypes. Our data reveal potential subcellular pathways contributing to the development of AD-associated phenotypes following mild traumatic brain injury, and putative strategies for intervening in these pathways.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Alzheimer/etiologia , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Técnicas de Cultura de Células/métodos , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino
6.
Elife ; 102021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33783351

RESUMO

Talin and vinculin are mechanosensitive proteins that are recruited early to integrin-based nascent adhesions (NAs). In two epithelial cell systems with well-delineated NA formation, we find these molecules concurrently recruited to the subclass of NAs maturing to focal adhesions. After the initial recruitment under minimal load, vinculin accumulates in maturing NAs at a ~ fivefold higher rate than in non-maturing NAs, and is accompanied by a faster traction force increase. We identify the R8 domain in talin, which exposes a vinculin-binding-site (VBS) in the absence of load, as required for NA maturation. Disruption of R8 domain function reduces load-free vinculin binding to talin, and reduces the rate of additional vinculin recruitment. Taken together, these data show that the concurrent recruitment of talin and vinculin prior to mechanical engagement with integrins is essential for the traction-mediated unfolding of talin, exposure of additional VBSs, further recruitment of vinculin, and ultimately, NA maturation.


Assuntos
Adesões Focais/metabolismo , Talina/metabolismo , Vinculina/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Camundongos , Ligação Proteica
7.
Phys Rev E ; 103(1-1): 012402, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601617

RESUMO

Cells of the social amoeba Dictyostelium discoideum migrate to a source of periodic traveling waves of chemoattractant as part of a self-organized aggregation process. An important part of this process is cellular memory, which enables cells to respond to the front of the wave and ignore the downward gradient in the back of the wave. During this aggregation, the background concentration of the chemoattractant gradually rises. In our microfluidic experiments, we exogenously applied periodic waves of chemoattractant with various background levels. We find that increasing background does not make detection of the wave more difficult, as would be naively expected. Instead, we see that the chemotactic efficiency significantly increases for intermediate values of the background concentration but decreases to almost zero for large values in a switch-like manner. These results are consistent with a computational model that contains a bistable memory module, along with a nonadaptive component. Within this model, an intermediate background level helps preserve directed migration by keeping the memory activated, but when the background level is higher, the directional stimulus from the wave is no longer sufficient to activate the bistable memory, suppressing directed migration. These results suggest that raising levels of chemoattractant background may facilitate the self-organized aggregation in Dictyostelium colonies.


Assuntos
Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/metabolismo , Dictyostelium/citologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/metabolismo , Relação Dose-Resposta a Droga , Modelos Biológicos
8.
PLoS One ; 15(7): e0236171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702047

RESUMO

Cell-substrate adhesion of the social amoeba Dictyostelium discoideum, a model organism often used for the study of chemotaxis, is non-specific and does not involve focal adhesion complexes. Therefore, micropatterned substrates where adherent Dictyostelium cells are constrained to designated microscopic regions are difficult to make. Here we present a micropatterning technique for Dictyostelium cells that relies on coating the substrate with an ∼1µm thick layer of polyethylene glycol (PEG) gel. We show that, when plated on a substrate with narrow parallel stripes of PEG-gel and glass, Dictyostelium cells nearly exclusive adhere to and migrate along the glass stripes, thus providing a model system to study one-dimensional migration of amoeboid cells. Surprisingly, we find substantial differences in the adhesion to PEG-gel and glass stripes between vegetative and developed cells and between two different axenic laboratory strains of Dictyostelium, AX2 and AX4. Even more surprisingly, we find that the distribution of Dictyostelium cells between PEG-gel and glass stripes is significantly affected by the expression of several fluorescent protein markers of the cytoskeleton. We carry out atomic force microscopy based single cell force spectroscopy measurements that confirm that the force of adhesion to PEG-gel substrate can be significantly different between vegetative and developed cells, AX2 and AX4 cells, and cells with and without fluorescent markers. Thus, the choice of parental background, the degree of development, and the expression of fluorescent protein markers can all have a profound effect on cell-substrate adhesion and should be considered when comparing migration of cells and when designing micropatterned substrates.


Assuntos
Movimento Celular , Dictyostelium/citologia , Corantes Fluorescentes/metabolismo , Microtecnologia/métodos , Polietilenoglicóis/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Dictyostelium/efeitos dos fármacos , Géis/farmacologia , Análise Espectral
9.
Biophys J ; 118(11): 2816-2828, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348719

RESUMO

Bacterial chemotaxis, the directed migration of bacteria in a gradient of chemoattractant, is one of the most well-studied and well-understood processes in cell biology. On the other hand, bacterial thermotaxis, the directed migration of bacteria in a gradient of temperature, is understood relatively poorly, with somewhat conflicting reports by different groups. One of the reasons for that is the relative technical difficulty of the generation of well-defined gradients of temperature that are sufficiently steep to elicit readily detectable thermotaxis. Here, we used a specially designed microfluidic device to study thermotaxis of Escherichia coli in a broad range of thermal gradients with a high rate of data collection. We found that in shallow temperature gradients with narrow temperature ranges, E. coli tended to aggregate near a sidewall of the gradient channel at either the lowest or the highest temperature. On the other hand, in sufficiently steep gradients with wide temperature ranges, E. coli aggregated at intermediate temperatures, with maximal cell concentrations found away from the sidewalls. We observed this intermediate temperature aggregation in a motility buffer that did not contain any major chemoattractants of E. coli, in contradiction to some previous reports, which suggested that this type of aggregation required the presence of at least one major chemoattractant in the medium. Even more surprisingly, the aggregation temperature strongly depended on the gradient steepness, decreasing by ∼10° as the steepness was increased from 27 to 53°C/mm. Our experiments also highlight the fact that assessments of thermal gradients by changes in fluorescence of temperature-sensitive fluorescent dyes need to account for thermophoresis of the dyes.


Assuntos
Escherichia coli , Resposta Táctica , Quimiotaxia , Dispositivos Lab-On-A-Chip , Temperatura
10.
Dev Cell ; 49(3): 444-460.e9, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31063759

RESUMO

Actin assembly supplies the structural framework for cell morphology and migration. Beyond structure, this actin framework can also be engaged to drive biochemical signaling programs. Here, we describe how the hyperactivation of Rac1 via the P29S mutation (Rac1P29S) in melanoma hijacks branched actin network assembly to coordinate proliferative cues that facilitate metastasis and drug resistance. Upon growth challenge, Rac1P29S-harboring melanoma cells massively upregulate lamellipodia formation by dendritic actin polymerization. These extended lamellipodia form a signaling microdomain that sequesters and phospho-inactivates the tumor suppressor NF2/Merlin, driving Rac1P29S cell proliferation in growth suppressive conditions. These biochemically active lamellipodia require cell-substrate attachment but not focal adhesion assembly and drive proliferation independently of the ERK/MAPK pathway. These data suggest a critical link between cell morphology and cell signaling and reconcile the dichotomy of Rac1's regulation of both proliferation and actin assembly by revealing a mutual signaling axis wherein actin assembly drives proliferation in melanoma.


Assuntos
Células Dendríticas/metabolismo , Melanoma/metabolismo , Pseudópodes/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Dendritos/metabolismo , Dendritos/patologia , Feminino , Xenoenxertos , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Metástase Neoplásica , Pseudópodes/patologia , Proteínas rac1 de Ligação ao GTP/genética
11.
Soft Matter ; 15(9): 2043-2050, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30724956

RESUMO

Adhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates. To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately. Our simulations show that increasing the adhesion results in increased spreading of cells and larger cell speeds. We propose an analytical model which shows that the cell speed is inversely proportional to an effective height of the cell and that increasing this height results in increased internal shear stress. The numerical and analytical results are confirmed in experiments on motile eukaryotic cells.


Assuntos
Adesão Celular , Movimento Celular , Molhabilidade , Dictyostelium/citologia , Modelos Biológicos
12.
Cell Rep ; 26(1): 119-130.e5, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605669

RESUMO

Leukocyte adhesion requires ß2-integrin activation. Resting integrins exist in a bent-closed conformation-i.e., not extended (E-) and not high affinity (H-)-unable to bind ligand. Fully activated E+H+ integrin binds intercellular adhesion molecules (ICAMs) expressed on the opposing cell in trans. E-H- transitions to E+H+ through E+H- or through E-H+, which binds to ICAMs on the same cell in cis. Spatial patterning of activated integrins is thought to be required for effective arrest, but no high-resolution cell surface localization maps of activated integrins exist. Here, we developed Super-STORM by combining super-resolution microscopy with molecular modeling to precisely localize activated integrin molecules and identify the molecular patterns of activated integrins on primary human neutrophils. At the time of neutrophil arrest, E-H+ integrins face each other to form oriented (non-random) nanoclusters. To address the mechanism causing this pattern, we blocked integrin binding to ICAMs in cis, which significantly relieved the face-to-face orientation.


Assuntos
Antígenos CD18/sangue , Moléculas de Adesão Celular/sangue , Neutrófilos/metabolismo , Humanos , Ligação Proteica
13.
Hum Mol Genet ; 28(9): 1498-1514, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590647

RESUMO

Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer's disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.


Assuntos
Alelos , Substituição de Aminoácidos , Variação Genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Axonal , Axônios/metabolismo , Caenorhabditis elegans , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Camundongos , Mutação , Fosforilação , Ligação Proteica , Vesículas Sinápticas/metabolismo , Tauopatias/etiologia , Tauopatias/metabolismo , Tauopatias/patologia
14.
Nat Commun ; 9(1): 5314, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552331

RESUMO

Arteries and veins are formed independently by different types of endothelial cells (ECs). In vascular remodeling, arteries and veins become connected and some arteries become veins. It is unclear how ECs in transforming vessels change their type and how fates of individual vessels are determined. In embryonic zebrafish trunk, vascular remodeling transforms arterial intersegmental vessels (ISVs) into a functional network of arteries and veins. Here we find that, once an ISV is connected to venous circulation, venous blood flow promotes upstream migration of ECs that results in displacement of arterial ECs by venous ECs, completing the transformation of this ISV into a vein without trans-differentiation of ECs. Arterial blood flow initiated in two neighboring ISVs prevents their transformation into veins by activating Notch signaling in ECs. Together, different responses of ECs to arterial and venous blood flow lead to formation of a balanced network with equal numbers of arteries and veins.


Assuntos
Artérias/citologia , Artérias/embriologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Remodelação Vascular/fisiologia , Veias/citologia , Veias/embriologia , Peixe-Zebra/embriologia , Animais , Diferenciação Celular/fisiologia , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Morfolinos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
Nat Commun ; 9(1): 4087, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291231

RESUMO

Bacterial biofilms represent an important medical problem; however, the mechanisms of the onset of biofilm formation are poorly understood. Here, using new controlled methods allowing high-throughput and reproducible biofilm growth, we show that biofilm formation is linked to self-imposed mechanical stress. In growing uropathogenic Escherichia coli colonies, we report that mechanical stress can initially emerge from the physical stress accompanying colony confinement within micro-cavities or hydrogel environments reminiscent of the cytosol of host cells. Biofilm formation can then be enhanced by a nutrient access-modulated feedback loop, in which biofilm matrix deposition can be particularly high in areas of increased mechanical and biological stress, with the deposited matrix further enhancing the stress levels. This feedback regulation can lead to adaptive and diverse biofilm formation guided by the environmental stresses. Our results suggest previously unappreciated mechanisms of the onset and progression of biofilm growth.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli Uropatogênica/fisiologia , Antibacterianos , Proliferação de Células , Tolerância a Medicamentos , Pressão , Estresse Mecânico
16.
Elife ; 72018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989548

RESUMO

Throughout metazoans, germ cells undergo incomplete cytokinesis to form syncytia connected by intercellular bridges. Gamete formation ultimately requires bridge closure, yet how bridges are reactivated to close is not known. The most conserved bridge component is centralspindlin, a complex of the Rho family GTPase-activating protein (GAP) CYK-4/MgcRacGAP and the microtubule motor ZEN-4/kinesin-6. Here, we show that oocyte production by the syncytial Caenorhabditis elegans germline requires CYK-4 but not ZEN-4, which contrasts with cytokinesis, where both are essential. Longitudinal imaging after conditional inactivation revealed that CYK-4 activity is important for oocyte cellularization, but not for the cytokinesis-like events that generate syncytial compartments. CYK-4's lipid-binding C1 domain and the GTPase-binding interface of its GAP domain were both required to target CYK-4 to intercellular bridges and to cellularize oocytes. These results suggest that the conserved C1-GAP region of CYK-4 constitutes a targeting module required for closure of intercellular bridges in germline syncytia.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Células Germinativas/citologia , Células Gigantes/citologia , Cinesinas/metabolismo , Oócitos/citologia , Fuso Acromático/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Citocinese , Proteínas Ativadoras de GTPase/metabolismo , Células Germinativas/fisiologia , Células Gigantes/fisiologia , Cinesinas/genética , Morfogênese , Oócitos/fisiologia , Ligação Proteica , Proteínas rho de Ligação ao GTP/metabolismo
17.
Cell Rep ; 21(13): 3885-3899, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281835

RESUMO

The adaptive immune response involves T cell differentiation and migration to sites of inflammation. T cell trafficking is initiated by rolling on inflamed endothelium. Tethers and slings, discovered in neutrophils, facilitate cell rolling at high shear stress. Here, we demonstrate that the ability to form tethers and slings during rolling is highly inducible in T helper 1 (Th1), Th17, and regulatory T (Treg) cells but less in Th2 cells. In vivo, endogenous Treg cells rolled stably in cremaster venules at physiological shear stress. Quantitative dynamic footprinting nanoscopy of Th1, Th17, and Treg cells uncovered the formation of multiple tethers per cell. Human Th1 cells also showed tethers and slings. RNA sequencing (RNA-seq) revealed the induction of cell migration and cytoskeletal genes in sling-forming cells. We conclude that differentiated CD4 T cells stabilize rolling by inducible tether and sling formation. These phenotypic changes approximate the adhesion phenotype of neutrophils and support CD4 T cell access to sites of inflammation.


Assuntos
Estresse Mecânico , Linfócitos T Reguladores/patologia , Animais , Diferenciação Celular , Movimento Celular/genética , Citoesqueleto/metabolismo , Selectina E/metabolismo , Humanos , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Microvilosidades/metabolismo , Neutrófilos/metabolismo , Selectina-P/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo , Transcriptoma/genética
18.
Elife ; 62017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28826491

RESUMO

In bacteria various tactic responses are mediated by the same cellular pathway, but sensing of physical stimuli remains poorly understood. Here, we combine an in-vivo analysis of the pathway activity with a microfluidic taxis assay and mathematical modeling to investigate the thermotactic response of Escherichia coli. We show that in the absence of chemical attractants E. coli exhibits a steady thermophilic response, the magnitude of which decreases at higher temperatures. Adaptation of wild-type cells to high levels of chemoattractants sensed by only one of the major chemoreceptors leads to inversion of the thermotactic response at intermediate temperatures and bidirectional cell accumulation in a thermal gradient. A mathematical model can explain this behavior based on the saturation-dependent kinetics of adaptive receptor methylation. Lastly, we find that the preferred accumulation temperature corresponds to optimal growth in the presence of the chemoattractant serine, pointing to a physiological relevance of the observed thermotactic behavior.


Assuntos
Fatores Quimiotáticos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Quimiotáticas Aceptoras de Metil/genética , Receptores de Superfície Celular/genética , Resposta Táctica/fisiologia , Adaptação Fisiológica , Ácido Aspártico/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Técnicas Analíticas Microfluídicas , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/farmacologia , Transdução de Sinais , Temperatura
19.
Proc Natl Acad Sci U S A ; 114(20): 5195-5200, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28465431

RESUMO

The intermediate filament vimentin is required for cells to transition from the epithelial state to the mesenchymal state and migrate as single cells; however, little is known about the specific role of vimentin in the regulation of mesenchymal migration. Vimentin is known to have a significantly greater ability to resist stress without breaking in vitro compared with actin or microtubules, and also to increase cell elasticity in vivo. Therefore, we hypothesized that the presence of vimentin could support the anisotropic mechanical strain of single-cell migration. To study this, we fluorescently labeled vimentin with an mEmerald tag using TALEN genome editing. We observed vimentin architecture in migrating human foreskin fibroblasts and found that network organization varied from long, linear bundles, or "fibers," to shorter fragments with a mesh-like organization. We developed image analysis tools employing steerable filtering and iterative graph matching to characterize the fibers embedded in the surrounding mesh. Vimentin fibers were aligned with fibroblast branching and migration direction. The presence of the vimentin network was correlated with 10-fold slower local actin retrograde flow rates, as well as spatial homogenization of actin-based forces transmitted to the substrate. Vimentin fibers coaligned with and were required for the anisotropic orientation of traction stresses. These results indicate that the vimentin network acts as a load-bearing superstructure capable of integrating and reorienting actin-based forces. We propose that vimentin's role in cell motility is to govern the alignment of traction stresses that permit single-cell migration.


Assuntos
Vimentina/química , Vimentina/fisiologia , Actinas/química , Animais , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Elasticidade , Transição Epitelial-Mesenquimal/fisiologia , Fibroblastos/química , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/fisiologia , Fenômenos Mecânicos , Microtúbulos/química , Fibras de Estresse/química , Fibras de Estresse/fisiologia , Vimentina/metabolismo , Suporte de Carga
20.
Zebrafish ; 14(5): 489-491, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28118101

RESUMO

We describe the design, fabrication, and applications of a four-well dish for imaging of the trunk of larval zebrafish. The dish facilitates immobilization of anesthetized zebrafish larvae, with their tails gently pushed against a microscope cover glass, enabling longitudinal imaging at 24-72 h postfertilization using high-resolution objective lenses.


Assuntos
Processamento de Imagem Assistida por Computador , Imobilização/instrumentação , Microscopia Confocal/métodos , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Técnicas de Cultura de Células , Larva/anatomia & histologia , Larva/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA