Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 124(11): 7106-7164, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38760012

RESUMO

The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.


Assuntos
Biomarcadores , Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Biomarcadores/análise , Biomarcadores/metabolismo , Animais , Neoplasias/diagnóstico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Inflamação/diagnóstico , Encefalopatias/diagnóstico , Encefalopatias/diagnóstico por imagem
2.
Anal Chem ; 95(46): 16801-16809, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37931004

RESUMO

1H NMR spectroscopic studies using BINOL as a chiral solvating agent (CSA) for a scalemic sulfiniminoboronic acid (SIBA) have revealed concentration- and enantiopurity-dependent variations in the chemical shifts of diagnostic imine protons used to determine enantiopurity levels. 11B/15N NMR spectroscopic studies and X-ray structural investigations revealed that unlike other iminoboronate species, BINOL-SIBA assemblies do not contain N-B coordination bonds, with 1H NMR NOESY experiments indicating that intermolecular H-bonding networks between BINOL and the SIBA analyte are responsible for these variations. These effects can lead to diastereomeric signal overlap at certain er values that could potentially lead to enantiopurity/configuration misassignments. Consequently, it is recommended that hydrogen-bonding-CSA-based 1H NMR protocols should be repeated using both CSA enantiomers to ensure that any concentration- and/or er-dependent variations in diagnostic chemical shifts are accounted for when determining the enantiopurity of a scalemic analyte.

3.
ACS Catal ; 12(18): 11444-11455, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36158901

RESUMO

A 2-keto-3-deoxygluconate aldolase from the hyperthermophile Sulfolobus solfataricus catalyzes the nonstereoselective aldol reaction of pyruvate and d-glyceraldehyde to produce 2-keto-3-deoxygluconate (d-KDGlc) and 2-keto-3-deoxy-d-galactonate (d-KDGal). Previous investigations into curing the stereochemical promiscuity of this hyperstable aldolase used high-resolution structures of the aldolase bound to d-KDGlc or d-KDGal to identify critical amino acids involved in substrate binding for mutation. This structure-guided approach enabled mutant variants to be created that could stereoselectively catalyze the aldol reaction of pyruvate and natural d-glyceraldehyde to selectively afford d-KDGlc or d-KDGal. Here we describe the creation of two further mutants of this Sulfolobus aldolase that can be used to catalyze aldol reactions between pyruvate and non-natural l-glyceraldehyde to enable the diastereoselective synthesis of l-KDGlc and l-KDGal. High-resolution crystal structures of all four variant aldolases have been determined (both unliganded and liganded), including Variant 1 with d-KDGlc, Variant 2 with pyruvate, Variant 3 with l-KDGlc, and Variant 4 with l-KDGal. These structures have enabled us to rationalize the observed changes in diastereoselectivities in these variant-catalyzed aldol reactions at a molecular level. Interestingly, the active site of Variant 4 was found to be sufficiently flexible to enable catalytically important amino acids to be replaced while still retaining sufficient enzymic activity to enable production of l-KDGal.

4.
J Am Chem Soc ; 144(1): 174-183, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931825

RESUMO

Changes in adenosine triphosphate (ATP) and peroxynitrite (ONOO-) concentrations have been correlated in a number of diseases including ischemia-reperfusion injury and drug-induced liver injury. Herein, we report the development of a fluorescent probe ATP-LW, which enables the simultaneous detection of ONOO- and ATP. ONOO- selectively oxidizes the boronate pinacol ester of ATP-LW to afford the fluorescent 4-hydroxy-1,8-naphthalimide product NA-OH (λex = 450 nm, λem = 562 nm or λex = 488 nm, λem = 568 nm). In contrast, the binding of ATP to ATP-LW induces the spirolactam ring opening of rhodamine to afford a highly emissive product (λex = 520 nm, λem = 587 nm). Due to the differences in emission between the ONOO- and ATP products, ATP-LW allows ONOO- levels to be monitored in the green channel (λex = 488 nm, λem = 500-575 nm) and ATP concentrations in the red channel (λex = 514 nm, λem = 575-650 nm). The use of ATP-LW as a combined ONOO- and ATP probe was demonstrated using hepatocytes (HL-7702 cells) in cellular imaging experiments. Treatment of HL-7702 cells with oligomycin A (an inhibitor of ATP synthase) resulted in a reduction of signal intensity in the red channel and an increase in that of the green channel as expected for a reduction in ATP concentrations. Similar fluorescence changes were seen in the presence of SIN-1 (an exogenous ONOO- donor).


Assuntos
Ácido Peroxinitroso
5.
Chem Sci ; 12(11): 3921-3928, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34163661

RESUMO

Drug-induced liver injury (DILI) is an important cause of potentially fatal liver disease. Herein, we report the development of a molecular probe (LW-OTf) for the detection and imaging of two biomarkers involved in DILI. Initially, primary reactive oxygen species (ROS) superoxide (O2˙-) selectively activates a near-infrared fluorescence (NIRF) output by generating fluorophore LW-OH. The C[double bond, length as m-dash]C linker of this hemicyanine fluorophore is subsequently oxidized by reactive nitrogen species (RNS) peroxynitrite (ONOO-), resulting in cleavage to release xanthene derivative LW-XTD, detected using two-photon excitation fluorescence (TPEF). An alternative fluorescence pathway can occur through cleavage of LW-OTf by ONOO- to non-fluorescent LW-XTD-OTf, which can react further with the second analyte O2˙- to produce the same LW-XTD fluorescent species. By combining NIRF and TPEF, LW-OTf is capable of differential and simultaneous detection of ROS and RNS in DILI using two optically orthogonal channels. Probe LW-OTf could be used to detect O2˙- or O2˙- and ONOO- in lysosomes stimulated by 2-methoxyestradiol (2-ME) or 2-ME and SIN-1 respectively. In addition, we were able to monitor the chemoprotective effects of tert-butylhydroxyanisole (BHA) against acetaminophen (APAP) toxicity in living HL-7702 cells. More importantly, TPEF and NIRF imaging confirmed an increase in levels of both O2˙- and ONOO- in mouse livers during APAP-induced DILI (confirmed by hematoxylin and eosin (H&E) staining).

6.
RSC Adv ; 10(23): 13496-13499, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35493005

RESUMO

A coumarin-based novel 'AND' logic fluorescent probe ROS-AHC has been developed for the simultaneous detection of ONOO- and biological thiols. ROS-AHC was shown to exhibit only a very small fluorescence response upon addition of a single GSH or ONOO- analyte. Exposure to both analytes, however, resulted in a significant fluorescence enhancement.

7.
J Org Chem ; 85(2): 1208-1215, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31774680

RESUMO

A practically simple three-component chiral derivatization protocol has been developed to determine the enantiopurity of eight S-chiral sulfinamides by 1H and 19F NMR spectroscopic analysis, based on their treatment with a 2-formylphenylboronic acid template and enantiopure pinanediol to afford a mixture of diastereomeric sulfiniminoboronate esters whose diastereomeric ratio is an accurate reflection of the enantiopurity of the parent sulfinamide.

8.
ChemistryOpen ; 8(12): 1407-1409, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31867147

RESUMO

Herein, we report the evaluation and synthesis of a reaction based fluorescent probe DCM-Bpin for the detection of Peroxynitrite (ONOO-). DCM-Bpin exhibits selective fluorescence off-on response for ONOO- over other reactive oxygen species, including H2O2. Moreover, DCM-Bpin is biocompatible and has been used to visualize exogenous ONOO- in HeLa cells.

9.
Angew Chem Int Ed Engl ; 58(8): 2418-2422, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30600901

RESUMO

Both E- and Z-N'-alkenyl urea derivatives of imidazolidinones may be formed selectively from enantiopure α-amino acids. Generation of their enolate derivatives in the presence of K+ and [18]crown-6 induces intramolecular migration of the alkenyl group from N' to Cα with retention of double bond geometry. DFT calculations indicate a partially concerted substitution mechanism. Hydrolysis of the enantiopure products under acid conditions reveals quaternary α-alkenyl amino acids with stereodivergent control of both absolute configuration and double bond geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA