Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Sci Total Environ ; 916: 169895, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215854

RESUMO

Marine bony fish are important participants in Earth's carbon cycle through their contributions to the biological pump and the marine inorganic carbon cycle. However, uncertainties in the composition and magnitude of fish contributions preclude their integration into fully coupled carbon-climate models. Here, we consider recent upwards revisions to global fish biomass estimates (2.7-9.5×) and provide new stable carbon isotope measurements that show marine fish are prodigious producers of carbonate with unique composition. Assuming the median increase (4.17×) in fish biomass estimates is linearly reflected in fish carbonate (ichthyocarbonate) production rate, marine fish are estimated to produce between 1.43 and 3.99 Pg CaCO3 yr-1, but potentially as much as 9.03 Pg CaCO3 yr-1. Thus, marine fish carbonate production is equivalent to or potentially higher than contributions by coccolithophores or pelagic foraminifera. New stable carbon isotope analyses indicate that a significant proportion of ichthyocarbonate is derived from dietary carbon, rather than seawater dissolved inorganic carbon. Using a statistical mixing model to derive source contributions, we estimate ichthyocarbonate contains up to 81 % dietary carbon, with average compositions of 28-56 %, standing in contrast to contents <10 % in other biogenic carbonate minerals. Results also indicate ichthyocarbonate contains 5.5-40.4 % total organic carbon. When scaled to the median revised global production of ichthyocarbonate, an additional 0.08 to 1.61 Pg C yr-1 can potentially be added to estimates of fish contributions to the biological pump, significantly increasing marine fish contributions to total surface carbon export. Our integration of geochemical and physiological analyses identifies an overlooked link between carbonate production and the biological pump. Since ichthyocarbonate production is anticipated to increase with climate change scenarios, due to ocean warming and acidification, these results emphasize the importance of quantitative understanding of the multifaceted role of marine fish in the global carbon cycle.


Assuntos
Carbono , Carbonatos , Animais , Humanos , Carbono/metabolismo , Carbonatos/química , Água do Mar/química , Isótopos de Carbono/metabolismo , Dióxido de Carbono/metabolismo , Peixes/metabolismo , Ciclo do Carbono , Proteínas de Membrana Transportadoras/metabolismo , Oceanos e Mares
2.
Sci Total Environ ; 916: 170044, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244625

RESUMO

Rising CO2 emissions have heightened the necessity for increased understanding of Earth's carbon cycle to predict future climates. The involvement of marine planktonic species in the global carbon cycle has been extensively studied, but contributions by marine fish remain poorly characterized. Marine teleost fishes produce carbonate minerals ('ichthyocarbonates') within the lumen of their intestines which are excreted at significant rates on a global scale. However, we have limited understanding of the fate of excreted ichthyocarbonate. We analyzed ichthyocarbonate produced by three different marine teleosts for mol%MgCO3 content, size, specific gravity, and dissolution rate to gain a better understanding of ichthyocarbonate fate. Based on the species examined here, we report that 75 % of ichthyocarbonates are ≤0.91 mm in diameter. Analyses indicate high Mg2+ content across species (22.3 to 32.3 % mol%MgCO3), consistent with previous findings. Furthermore, ichthyocarbonate specific gravity ranged from 1.23 to 1.33 g/cm3, and ichthyocarbonate dissolution rates varied among species as a function of aragonite saturation state. Ichthyocarbonate sinking rates and dissolution depth were estimated for the Atlantic, Pacific, and Indian ocean basins for the three species examined. In the North Atlantic, for example, ~33 % of examined ichthyocarbonates are expected to reach depths exceeding 200 m prior to complete dissolution. The remaining ~66 % of ichthyocarbonate is estimated to dissolve and contribute to shallow water alkalinity budgets. Considering fish biomass and ichthyocarbonate production rates, our results support that marine fishes are critical to the global carbon cycle, contributing to oceanic alkalinity budgets and thereby influencing the ability of the oceans to neutralize atmospheric CO2.


Assuntos
Dióxido de Carbono , Ecossistema , Animais , Dióxido de Carbono/análise , Gravidade Específica , Oceanos e Mares , Carbonatos , Peixes , Ciclo do Carbono , Oceano Índico , Água do Mar , Carbono
3.
Sci Total Environ ; 899: 165491, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453709

RESUMO

Few studies have been performed on early-life stage toadfish, and none have addressed their tolerance to temperature and hypoxia despite large seasonal temperature fluctuations and daily hypoxia in their natural environment. The first directed captive breeding of Opsanus beta allowed the examination of larval oxygen demands and hypoxia tolerance across the range of their environmental temperatures (23-33 °C). Larval toadfish exhibited a surprisingly large aerobic scope across the tested temperature range. In response to progressive hypoxia, larval toadfish showed early metabolic depression and a low regulation index (RI), while juveniles had higher regulatory abilities but, unexpectedly, a lower aerobic scope. Larval and juvenile toadfish survived hours of severe hypoxia, but larval fish had a higher excessive post-hypoxia oxygen consumption, yet their metabolic rate returned to RMR in the same timeframe as the juveniles, likely due to their higher aerobic scope. We defined hypoxia tolerance using a physiological trait, p50, the oxygen tension in which oxygen uptake is reduced to 50 % of the metabolic rate at rest and determined it at all tested temperatures. Comparing these p50 values to environmental conditions in Florida Bay using hourly temperature and oxygen measurements from January 2014-October 2021 revealed that larval toadfish rarely experience < p50 conditions (11 % of events). Further, the median duration of these events was 3 h. The metabolic performance of larval toadfish combined with temperature and oxygen observations from their natural environment reveals the fascinating strategy in which larval toadfish survive diel hypoxia across seasons.


Assuntos
Batracoidiformes , Animais , Batracoidiformes/metabolismo , Larva/fisiologia , Hipóxia/veterinária , Oxigênio/metabolismo , Meio Ambiente , Temperatura , Consumo de Oxigênio
4.
Physiology (Bethesda) ; 38(4): 0, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917964

RESUMO

Reduction of intestinal lumen osmotic pressure by the formation of Ca(Mg)CO3, "ichthyocarbonate," is essential for osmoregulation by the only vertebrate group, ray-finned fishes, widely capable of hydrating by ingesting seawater. Ichthyocarbonate formation and excretion are under elaborate physiological control and play an important, yet still poorly defined, role in the oceanic carbon cycle.


Assuntos
Osmorregulação , Água do Mar , Animais , Osmorregulação/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Peixes/fisiologia , Vertebrados/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-36775093

RESUMO

Ocean acidification is predicted to have a wide range of impacts on fish, but there has been little focus on broad-ranging pelagic fish species. Early life stages of fish are thought to be particularly susceptible to CO2 exposure, since acid-base regulatory faculties may not be fully developed. We obtained yellowfin tuna (Thunnus albacares) from a captive spawning broodstock population and exposed them to control or 1900 µatm CO2 through the first three days of development as embryos transitioned into yolk sac larvae. Metabolic rate, yolk sac depletion, and oil globule depletion were measured to assess overall energy usage. To determine if CO2 altered protein catabolism, tissue nitrogen content and nitrogenous waste excretion were quantified. CO2 exposure did not significantly impact embryonic metabolic rate, yolk sac depletion, or oil globule depletion, however, there was a significant decrease in metabolic rate at the latest measured yolk sac larval stage (36 h post fertilization). CO2-exposure led to a significant increase in nitrogenous waste excretion in larvae, but there were no differences in nitrogen tissue accumulation. Nitrogenous waste accumulated in embryos as they developed but decreased after hatch, coinciding with a large increase in nitrogenous waste excretion and increased metabolic rate in newly hatched larvae. Our results provide insight into how yellowfin tuna are impacted by increases in CO2 in early development, but more research with higher levels of replication is needed to better understand long-term impacts and acid-base regulatory mechanisms in this important pelagic fish.


Assuntos
Dióxido de Carbono , Atum , Animais , Atum/metabolismo , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Água do Mar , Larva
6.
Environ Sci Technol ; 56(18): 13019-13028, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36053064

RESUMO

The Deepwater Horizon (DWH) disaster released 3.19 million barrels of crude oil into the Gulf of Mexico (GOM) in 2010, overlapping the habitat of pelagic fish populations. Using mahi-mahi (Coryphaena hippurus)─a highly migratory marine teleost present in the GOM during the spill─as a model species, laboratory experiments demonstrate injuries to physiology and behavior following oil exposure. However, more than a decade postspill, impacts on wild populations remain unknown. To address this gap, we exposed wild mahi-mahi to crude oil or control conditions onboard a research vessel, collected fin clip samples, and tagged them with electronic tags prior to release into the GOM. We demonstrate profound effects on survival and reproduction in the wild. In addition to significant changes in gene expression profiles and predation mortality, we documented altered acceleration and habitat use in the first 8 days oil-exposed individuals were at liberty as well as a cessation of apparent spawning activity for at least 37 days. These data reveal that even a brief and low-dose exposure to crude oil impairs fitness in wild mahi-mahi. These findings offer new perspectives on the lasting impacts of the DWH blowout and provide insight about the impacts of future deep-sea oil spills.


Assuntos
Perciformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Golfo do México , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/metabolismo
7.
Ecotoxicology ; 31(7): 1057-1067, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35982347

RESUMO

Perfluoroalkyl substances (PFAS) are highly persistent organic pollutants that have been detected in a wide array of environmental matrices and, in turn, diverse biota including humans and wildlife wherein they have been associated with a multitude of toxic, and otherwise adverse effects, including ecosystem impacts. In the present study, we developed a toxicity assay for embryonic stages of mahi-mahi (Coryphaena hippurus), as an environmentally relevant pelagic fish species, and applied this assay to the evaluation of the toxicity of "legacy" and "next-generation" PFAS including, respectively, perfluorooctanoic acid (PFOA) and several perfluoroethercarboxylic acids (PFECA). Acute embryotoxicity, in the form of lethality, was measured for all five PFAS toward mahi-mahi embryos with median lethal concentrations (LC50) in the micromolar range. Consistent with studies in other similar model systems, and specifically the zebrafish, embryotoxicity in mahi-mahi generally (1) correlated with fluoroalkyl/fluoroether chain length and hydrophobicity, i.e., log P, of PFAS, and thus, aligned with a role of uptake in the relative toxicity; and (2) increased with continuous exposure, suggesting a possible role of development stage specifically including a contribution of hatching (and loss of protective chorion) and/or differentiation of target systems (e.g., liver). Compared to prior studies in the zebrafish embryo model, mahi-mahi was significantly more sensitive to PFAS which may be related to differences in either exposure conditions (e.g., salinity) and uptake, or possibly differential susceptibility of relevant targets, for the two species. Moreover, when considered in the context of the previously reported concentration of PFAS within upper sea surface layers, and co-localization of buoyant eggs (i.e., embryos) and other early development stages (i.e., larvae, juveniles) of pelagic fish species to the sea surface, the observed toxicity potentially aligns with environmentally relevant concentrations in these marine systems. Thus, impacts on ecosystems including, in particular, population recruitment are a possibility. The present study is the first to demonstrate embryotoxicity of PFAS in a pelagic marine fish species, and suggests that mahi-mahi represents a potentially informative, and moreover, environmentally relevant, ecotoxicological model for PFAS in marine systems.


Assuntos
Fluorocarbonos , Perciformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Ecossistema , Fluorocarbonos/toxicidade , Humanos , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
8.
Sci Total Environ ; 803: 149858, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482148

RESUMO

Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.


Assuntos
Ecossistema , Peixe-Zebra , Animais , Humanos , Espectroscopia de Ressonância Magnética , Toxinas Marinhas , Metabolômica , Oxocinas
9.
Artigo em Inglês | MEDLINE | ID: mdl-34755650

RESUMO

Teleost fishes are diverse and successful, comprising almost half of all extant vertebrate species. It has been suggested that their success as a group is related, in part, to their unique O2 transport system, which includes pH-sensitive hemoglobin, a red blood cell ß-adrenergic Na+/H+ exchanger (RBC ß-NHE) that protects red blood cell pH, and plasma accessible carbonic anhydrase which is absent at the gills but present in some tissues, that short-circuits the ß-NHE to enhance O2 unloading during periods of stress. However, direct support for this has only been examined in a few species of salmonids. Here, we expand the knowledge of this system to two warm-water, highly active marine percomorph fish, cobia (Rachycentron canadum) and mahi-mahi (Coryphaena hippurus). We show evidence for RBC ß-NHE activity in both species, and characterize the Hb-O2 transport system in one of those species, cobia. We found significant RBC swelling following ß-adrenergic stimulation in both species, providing evidence for the presence of a rapid, active RBC ß-NHE in both cobia and mahi-mahi, with a time-course similar to that of salmonids. We generated oxygen equilibrium curves (OECs) for cobia blood and determined the P50, Hill, and Bohr coefficients, and used these data to model the potential for enhanced O2 unloading. We determined that there was potential for up to a 61% increase in O2 unloading associated with RBC ß-NHE short-circuiting, assuming a - 0.2 ∆pHa-v in the blood. Thus, despite phylogenetic and life history differences between cobia and the salmonids, we found few differences between their Hb-O2 transport systems, suggesting conservation of this physiological trait across diverse teleost taxa.


Assuntos
Peixes/fisiologia , Oxigênio/fisiologia , Perciformes/fisiologia , Animais , Eritrócitos/metabolismo , Proteínas de Peixes/metabolismo , Peixes/sangue , Hemoglobinas/metabolismo , Cinética , Oxigênio/sangue , Perciformes/sangue , Salmonidae/sangue , Salmonidae/fisiologia , Especificidade da Espécie
10.
Sci Total Environ ; 808: 151988, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34838918

RESUMO

Crude oil is known to induce developmental defects in teleost fish exposed during early life stages (ELSs). While most studies in recent years have focused on cardiac endpoints, evidence from whole-animal transcriptomic analyses and studies with individual polycyclic aromatic hydrocarbons (PAHs) indicate that the developing kidney (i.e., pronephros) is also at risk. Considering the role of the pronephros in osmoregulation, and the common observance of edema in oil-exposed ELS fish, surprisingly little is known regarding the effects of oil exposure on pronephros development and function. Using zebrafish (Danio rerio) ELSs, we assessed the transcriptional and morphological responses to two dilutions of high-energy water accommodated fractions (HEWAF) of oil from the Deepwater Horizon oil spill using a combination of qPCR and whole-mount in situ hybridization (WM-ISH) of candidate genes involved in pronephros development and function, and immunohistochemistry (WM-IHC). To assess potential functional impacts on the pronephros, three 24 h osmotic challenges (2 hypo-osmotic, 1 near iso-osmotic) were implemented at two developmental time points (48 and 96 h post fertilization; hpf) following exposure to HEWAF. Changes in transcript expression level and location specific to different regions of the pronephros were observed by qPCR and WM-ISH. Further, pronephros morphology was altered in crude oil exposed larvae, characterized by failed glomerulus and neck segment formation, and straightening of the pronephric tubules. The osmotic challenges at 96 hpf greatly exacerbated edema in both HEWAF-exposed groups regardless of osmolarity. By contrast, larvae at 48 hpf exhibited no edema prior to the osmotic challenge, but previous HEWAF exposure elicited a concentration-response increase in edema at hypo-osmotic conditions that appeared to have been largely alleviated under near iso-osmotic conditions. In summary, ELS HEWAF exposure impaired proper pronephros development in zebrafish, which coupled with cardiotoxic effects, most likely reduced or inhibited pronephros fluid clearance capacity and increased edema formation.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Rim , Larva , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
11.
Sci Total Environ ; 806(Pt 3): 150542, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582874

RESUMO

Pelagic fish embryos are thought to float in or near surface waters for the majority of their development and are presumed to have little to no control over their mobility, rendering these embryos at high risk for damages associated with surface stressors such as ultraviolet radiation (UVR). We recently challenged these long-standing paradigms by characterizing a potential mechanism of stressor avoidance in early-life stage mahi-mahi (Coryphaena hippurus) in which embryos sense external cues, such as UVR, and modify their buoyancy to reduce further exposure. It is unknown whether embryos of other marine fish with pelagic spawning strategies have similar capabilities. To fill this knowledge gap, we investigated buoyancy change in response to UVR in three additional species of marine fish that utilize a pelagic spawning strategy: yellowfin tuna (Thunnus albacares), red snapper (Lutjanus campechanus), and cobia (Rachycentron canadum). Embryos of all three species displayed increased specific gravity and loss of buoyancy after exposures to environmentally relevant doses of UVR, a response that may be ubiquitous to fish with pelagic embryos. To gain further insight into this response, we investigated recovery of buoyancy, oxygen consumption, energy depletion, and photolyase induction in response to UVR exposures in at least one of the three species listed above.


Assuntos
Perciformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Embrião não Mamífero/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Raios Ultravioleta
12.
J Toxicol Environ Health B Crit Rev ; 24(8): 355-394, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34542016

RESUMO

In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.


Assuntos
Exposição Ambiental/efeitos adversos , Poluição por Petróleo/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Aves , Monitoramento Ambiental/métodos , Peixes , Humanos , Insuficiência de Múltiplos Órgãos/etiologia , Petróleo/toxicidade , Tartarugas , Vertebrados
13.
J Comp Physiol B ; 191(5): 865-880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302186

RESUMO

Despite having an aglomerular kidney, Gulf toadfish can survive in water ranging from nearly fresh up to 70 parts per thousand salinity. In hyperosmotic environments, the major renal function is to balance the passive Mg2+ load from the environment with an equal excretion. However, the molecular transporters involved in Mg2+ secretion are poorly understood. We investigated whether environmental MgCl2 alone or in combination with elevated salinity affected transcriptional regulation of genes classically involved in renal Mg2+ secretion (slc41a1, slc41a3, cnnm3) together with three novel genes (trpm6, trpm7, claudin-19) and two isoforms of the Na+/K+-ATPase α-subunit (nka-α1a, nka-α1b). First, toadfish were acclimated to 5, 9, 35, or 60 ppt water (corresponding to ~ 7, 13, 50 and 108 mmol L-1 ambient [Mg2+], respectively) and sampled at 24 h or 9 days. Next, the impact of elevated ambient [Mg2+] was explored by exposing toadfish to control (50 mmol L-1 Mg2+), or elevated [Mg2+] (100 mmol L-1) at a constant salinity for 7 days. Mg2+ levels in this experiment corresponded with levels in control and hypersaline conditions in the first experiment. A salinity increase from 5 to 60 ppt stimulated the level of all investigated transcripts in the kidney. In Mg2+-exposed fish, we observed a 14-fold increase in the volume of intestinal fluids and elevated plasma osmolality and [Mg2+], suggesting osmoregulatory challenges. However, none of the renal gene targets changed expression compared with the control group. We conclude that transcriptional regulation of renal Mg2+ transporters is induced by elevated [Mg2+] in combination with salinity rather than elevated ambient [Mg2+] alone.


Assuntos
Batracoidiformes , Animais , Batracoidiformes/metabolismo , Brânquias/metabolismo , Rim/metabolismo , Magnésio/metabolismo , Osmorregulação , Salinidade , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-33621645

RESUMO

In this study, we investigated the effect of acute increases in temperature on cardiovascular function of mahi-mahi (Coryphaena hippurus). We also describe, for the first time, an artery that supplies the gastrointestinal tract that originates from the fourth branchial artery. We used vascular casting to verify the anatomical location of this unique celiaco-mesenteric artery. We predicted that blood flow in this vessel would be correlated with the digestive state of the animal. Increasing water temperature from 25.0 to 30.5 °C resulted in a linear increase in heart rate (fH) from 165 ± 4 beats∙min-1to 232 ± 7 beats∙min-1. Over this temperature range, fH strongly correlated with water temperature (R2 = 0.79). At 31 °C fH no longer correlated with water temperature, and at 34 °C fH had dropped to 114 ± 19 beats∙min-1. Furthermore, we found that mahi are capable of maintaining constant cardiac output over a temperature range from 25 to 31 °C. Cardiac function appeared to be compromised at temperatures >31 °C. In fed anesthetized fish, blood flow was pulsatile in the celiaco-mesenteric artery and was not in fasted fish. In fed fish, blood flow in the left celiaco-mesenteric artery was 1.99 ± 0.78 ml·min-1·kg-1 compared to the total cardiac output of 168.6 ± 12.7 ml·min-1·kg-1. The data suggest that mahi can differentially regulate gastric blood flow based on feeding state, which may explain the high digestive efficiency and very high growth rates of these pelagic predators.


Assuntos
Digestão , Coração/fisiologia , Perciformes/fisiologia , Temperatura , Animais , Débito Cardíaco , Perciformes/crescimento & desenvolvimento
15.
Ann Rev Mar Sci ; 13: 137-160, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749906

RESUMO

Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.


Assuntos
Peixes/fisiologia , Poluição por Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Coração/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
16.
J Comp Physiol B ; 191(1): 85-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33070210

RESUMO

Increases in ambient salinity demand parallel increases in intestinal base secretion for maintenance of osmoregulatory status, which is likely the cause of a transient acidosis following transfer of euryhaline fish from freshwater to seawater. It was predicted that transfer of the marine Gulf toadfish (Opsanus beta) from seawater (35 ppt) to hypersaline (60 ppt) seawater (HSW) would lead to a transient acidosis that would be compensated by increases in branchial acid excretion to offset the acid-base disturbance. Toadfish exposed to HSW showed a significant decrease in blood pH and [HCO3-] but no increase in pCO2, followed by a full recovery after 48-96 h. A similar metabolic acidosis and recovery was found when fish were exposed to 60-ppt HCO3--free seawater (HEPES-buffered), which may suggest that compensation for intestinal base loss during hypersaline treatment is from gill H+ excretion rather than gill HCO3- uptake. However, we cannot rule out that reduced branchial HCO3- excretion contributed to an increase in net acid excretion. Since colchicine prevents full compensation, translocation of H+ and/or HCO3- transporters between cytosolic compartments and plasma membrane fractions might be involved in compensating for the hypersalinity-induced acidosis. Translocation of transporters rather than de novo synthesis may represent a faster and less energetically demanding response to rapidly fluctuating and high salinities encountered by toadfish in their natural environment.


Assuntos
Acidose , Batracoidiformes , Acidose/veterinária , Animais , Transporte Biológico , Brânquias , Salinidade , Água do Mar , Água
17.
Environ Sci Technol ; 54(21): 13579-13589, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33138383

RESUMO

Publicly available toxicological studies on wastewaters associated with unconventional oil and gas (UOG) activities in offshore regions are nonexistent. The current study investigated the impact of hydraulic fracturing-generated flowback water (HF-FW) on whole organism swimming performance/respiration and cardiomyocyte contractility dynamics in mahi-mahi (Coryphaena hippurus-hereafter referred to as "mahi"), an organism which inhabits marine ecosystems where offshore hydraulic fracturing activity is intensifying. Following exposure to 2.75% HF-FW for 24 h, mahi displayed significantly reduced critical swimming speeds (Ucrit) and aerobic scopes (reductions of ∼40 and 61%, respectively) compared to control fish. Additionally, cardiomyocyte exposures to the same HF-FW sample at 2% dilutions reduced a multitude of mahi sarcomere contraction properties at various stimulation frequencies compared to all other treatment groups, including an approximate 40% decrease in sarcomere contraction size and a nearly 50% reduction in sarcomere relaxation velocity compared to controls. An approximate 8-fold change in expression of the cardiac contractile regulatory gene cmlc2 was also seen in ventricles from 2.75% HF-FW-exposed mahi. These results collectively identify cardiac function as a target for HF-FW toxicity and provide some of the first published data on UOG toxicity in a marine species.


Assuntos
Fraturamento Hidráulico , Perciformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Ecossistema , Miócitos Cardíacos , Poluição por Petróleo/análise , Natação , Águas Residuárias , Água , Poluentes Químicos da Água/toxicidade
19.
Sci Rep ; 10(1): 14865, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913250

RESUMO

Maintaining energy balance over a wide range of temperatures is critical for an active pelagic fish species such as the mahi-mahi (Coryphaena hippurus), which can experience rapid changes in temperature during vertical migrations. Due to the profound effect of temperature on mitochondrial function, this study was designed to investigate the effects of temperature on mitochondrial respiration in permeabilized heart and red skeletal muscle (RM) fibres isolated from mahi-mahi. As RM is thought to be more anatomically isolated from rapid ambient temperature changes compared to the myocardium, it was hypothesized that heart mitochondria would be more tolerant of temperature changes through a greater ability to match respiratory capacity to an increase in temperature and to maintain coupling, when compared to RM mitochondria. Results show that heart fibres were more temperature sensitive and increased respiration rate with temperature increases to a greater degree than RM. Respiratory coupling ratios at the three assay temperatures (20, 26, and 30 °C), revealed that heart mitochondria were less coupled at a lower temperature (26 °C) compared to RM mitochondria (30 °C). In response to an in vitro acute temperature challenge, both tissues showed irreversible effects, where both heart and RM increased uncoupling whether the assay temperature was acutely changed from 20 to 30 °C or 30 to 20 °C. The findings from this study indicate that mahi-mahi heart mitochondria were more temperature sensitive compared to those from RM.


Assuntos
Coração/fisiologia , Mitocôndrias Cardíacas/fisiologia , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiopatologia , Perciformes/fisiologia , Animais , Metabolismo Energético , Consumo de Oxigênio , Temperatura
20.
Aquat Toxicol ; 226: 105568, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32791376

RESUMO

An emerging Multi-Ion Toxicity (MIT) model for assessment of environmental salt pollution is based on the premise that major ion toxicity to aquatic organisms is related to a critical disturbance of the trans-epithelial potential across the gills (ΔTEP), which can be predicted by electrochemical theory. However, the model has never been evaluated physiologically. We directly tested key assumptions by examining the individual effects of eight different salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl, K2SO4, CaCl2, and CaSO4) on measured TEP in three different fish species (fathead minnow, Pimephales promelas = FHM; channel catfish, Ictalurus punctatus = CC; bluegill, Lepomis macrochirus = BG). A geometric concentration series based on previously reported 96-h LC50 values for FHM was used. All salts caused concentration-dependent increases in TEP to less negative/more positive values in a pattern well-described by the Michaelis-Menten equation. The ΔTEP responses for different salts were similar to one another within each species when concentrations were expressed as a percentage of the FHM LC50. A plateau was reached at or before 100 % of the LC50 where the ΔTEP values were remarkably consistent, with only 1.4 to 2.2-fold variation. This relative uniformity in the ΔTEP responses contrasts with 28-fold variation in salt concentration (in mmol L-1), 9.6-fold in total dissolved solids, and 7.9-fold in conductivity at the LC50. The Michaelis-Menten Km values (salt concentrations causing 50 % of the ΔTEPmax) were positively related to the 96-h LC50 values. ΔTEP responses were not a direct effect of osmolarity in all species and were related to specific cation rather than specific anion concentrations in FHM. These responses were stable for up to 24 h in CC. The results provide strong physiological support for the assumptions of the MIT model, are coherent with electrochemical theory, and point to areas for future research.


Assuntos
Cyprinidae/fisiologia , Epitélio/fisiologia , Brânquias/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Perciformes/fisiologia , Sais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Eletrodos , Brânquias/fisiologia , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA