Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Res Sq ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38947099

RESUMO

Nicotinamide Adenine Dinucleotide (NAD + ) is implicated in bioenergetics, DNA repair, and senescence. Depletion of NAD + is associated with aging and neurodegenerative disease, prompting a growing interest in NAD + supplementation. With rising over-the-counter use of NAD, understanding their impact on perioperative recovery becomes essential. This study investigates the effect of NADH, a common NAD + precursor, on anesthesia in rodents. Baseline and post-anesthesia (1.5% isoflurane) open field and Y-maze activity were recorded in adult male and female C57/BL6 mice (n = 8-10/group). NADH (150 mg/kg, intraperitoneal) or vehicle (0.9% normal saline) were given at baseline or during anesthesia. The NADH-treated group exhibited a significant decrease in open-field activity relative to vehicle-treated. This diminished activity was reflected in reduced distance travelled and average velocity after emergence from anesthesia in the NADH-treated group. NADH treatment did not improve Y-maze performance after anesthesia as the number of visits to the novel arm was significantly decreased. This study demonstrates a potentially adverse impact of NADH on recovery from anesthesia. We revealed a depression in open-field activity and Y-maze performance with NADH supplementation, an indicator of cognitive recovery in rodents. The broad implications of NAD + in aging are likely to shape supplementation trends, highlighting the importance of understanding the potential influence of administering NAD + on anesthetic sensitivity and recovery.

2.
Graph Med Rev ; 4(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895023

RESUMO

Nearly 540 million people world-wide have facial flushing and an increased heart rate after consuming alcohol. Known as the alcohol flushing response, this reaction to alcohol is a result of a genetic variant in an enzyme aldehyde dehydrogenase 2 (ALDH2), known as ALDH2*2. Mainly carried by those of East Asian descent, the genetic variant is likely the most common genetic variant carried in the world. Carrying this ALDH2*2 genetic variant has important health implications with respect cancer risk which is increased when carriers of the ALDH2*2 genetic variant frequently use of alcohol or tobacco products. This comic explains the alcohol flush response and the health risks associated with alcohol and tobacco use for those who carry an ALDH2*2 variant.

4.
Int Immunopharmacol ; 131: 111858, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492336

RESUMO

BACKGROUND: Diabetes is a global health problem whose common complication is diabetic cardiomyopathy, characterized by chronic inflammation of the heart muscle. Macrophages are the main white blood cells found in the resting heart. Therefore, we investigated the underling mechanism of macrophage on myocardial fibrosis in diabetes. METHODS: Here, echocardiography was utilized to evaluate cardiac function, and the degree of myocardial fibrosis was assessed using Masson's trichrome staining, followed by single-cell RNA sequencing (scRNA-seq) to analyze the phenotype, function, developmental trajectory, and interactions between immune cells, endothelial cells (ECs), and fibroblasts (FBs) in the hearts of db/db mice at different stages of diabetes. Macrophages and cardiac fibroblasts were also co-cultured in order to study the signaling between macrophages and fibroblasts. RESULTS: We found that with the development of diabetes mellitus, myocardial hypertrophy and fibrosis occurred that was accompanied by cardiac dysfunction. A significant proportion of immune cells, endothelial cells, and fibroblasts were identified by RNA sequencing. The most significant changes observed were in macrophages, which undergo M1 polarization and are critical for oxidative stress and extracellular matrix (ECM) formation. We further found that M1 macrophages secreted interleukin-1ß (IL-1ß), which interacted with the receptor on the surface of fibroblasts, to cause myocardial fibrosis. In addition, crosstalk between M1 macrophages and endothelial cells also plays a key role in fibrosis and immune response regulation through IL-1ß and corresponding receptors. CONCLUSIONS: M1 macrophages mediate diabetic myocardial fibrosis through interleukin-1ß interaction with fibroblasts.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Camundongos , Animais , Interleucina-1beta , Células Endoteliais , Macrófagos , Fibrose
5.
Basic Res Cardiol ; 119(2): 329-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38236300

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid that plays a crucial role in cardiovascular diseases. Here, we question whether LPA contributes to myocardial ischemia/reperfusion (I/R) injury by acting on transient receptor potential vanilloid 1 (TRPV1) in spinal cord. By ligating the left coronary artery to establish an in vivo I/R mouse model, we observed a 1.57-fold increase in LPA level in the cerebrospinal fluid (CSF). The I/R-elevated CSF LPA levels were reduced by HA130, an LPA synthesis inhibitor, compared to vehicle treatment (4.74 ± 0.34 vs. 6.46 ± 0.94 µg/mL, p = 0.0014). Myocardial infarct size was reduced by HA130 treatment compared to the vehicle group (26 ± 8% vs. 46 ± 8%, p = 0.0001). To block the interaction of LPA with TRPV1 at the K710 site, we generated a K710N knock-in mouse model. The TRPV1K710N mice were resistant to LPA-induced myocardial injury, showing a smaller infarct size relative to TRPV1WT mice (28 ± 4% vs. 60 ± 7%, p < 0.0001). Additionally, a sequence-specific TRPV1 peptide targeting the K710 region produced similar protective effects against LPA-induced myocardial injury. Blocking the K710 region through K710N mutation or TRPV1 peptide resulted in reduced neuropeptides release and decreased activity of cardiac sensory neurons, leading to a decrease in cardiac norepinephrine concentration and the restoration of intramyocardial pro-survival signaling, namely protein kinase B/extracellular regulated kinase/glycogen synthase kinase-3ß pathway. These findings suggest that the elevation of CSF LPA is strongly associated with myocardial I/R injury. Moreover, inhibiting the interaction of LPA with TRPV1 by blocking the K710 region uncovers a novel strategy for preventing myocardial ischemic injury.


Assuntos
Lisofosfolipídeos , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Canais de Cátion TRPV/genética , Peptídeos/metabolismo , Medula Espinal/metabolismo
7.
Laryngoscope ; 134(3): 1316-1326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37698394

RESUMO

OBJECTIVES: The effects of electronic cigarettes (e-cigarettes) on the larynx are relatively unknown. This study examined the short-term effects of e-cigarette inhalation on cellular and inflammatory responses within the mouse laryngeal glottic and subglottic regions after exposure to pod-based devices (JUUL). METHODS: Male C57BL6/J mice (8-9 weeks) were assigned to control (n = 9), JUUL flavors Mint (JMi; n = 10) or Mango (JMa; n = 10). JUUL mice were exposed to 2 h/day for 1, 5, and 10 days using the inExpose inhalation system. Control mice were in room air. Vocal fold (VF) epithelial thickness, cell proliferation, subglandular area and composition, inflammatory cell infiltration, and surface topography were evaluated in the harvested larynges. Mouse body weight and urinary nicotine biomarkers were also measured. Chemical analysis of JUUL aerosols was conducted using selective ion flow tube mass spectrometry. RESULTS: JUUL-exposed mice had reduced body weight after day 5. Urinary nicotine biomarker levels indicated successful JUUL exposure and metabolism. Quantitative analysis of JUUL aerosol indicated that chemical constituents differ between JMi and JMa flavors. VF epithelial thickness, cellular proliferation, glandular area, and surface topography remained unchanged after JUUL exposures. Acidic mucus content increased after 1 day of JMi exposure. VF macrophage and T-cell levels slightly increased after 10 days of JMi exposures. CONCLUSIONS: Short-term e-cigarette exposures cause minimal flavor- and region-specific cellular and inflammatory changes in the mouse larynx. This work provides a foundation for long-term studies to determine if these responses are altered with multiple e-cigarette components and concentrations. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1316-1326, 2024.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Laringe , Produtos do Tabaco , Masculino , Animais , Camundongos , Nicotina/efeitos adversos , Nicotina/análise , Aerossóis/efeitos adversos , Peso Corporal
10.
Nat Cardiovasc Res ; 2(5): 467-485, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37693816

RESUMO

The pleiotropic benefits of statins in cardiovascular diseases that are independent of their lipid-lowering effects have been well documented, but the underlying mechanisms remain elusive. Here we show that simvastatin significantly improves human induced pluripotent stem cell-derived endothelial cell functions in both baseline and diabetic conditions by reducing chromatin accessibility at transcriptional enhanced associate domain elements and ultimately at endothelial-to-mesenchymal transition (EndMT)-regulating genes in a yes-associated protein (YAP)-dependent manner. Inhibition of geranylgeranyltransferase (GGTase) I, a mevalonate pathway intermediate, repressed YAP nuclear translocation and YAP activity via RhoA signaling antagonism. We further identified a previously undescribed SOX9 enhancer downstream of statin-YAP signaling that promotes the EndMT process. Thus, inhibition of any component of the GGTase-RhoA-YAP-SRY box transcription factor 9 (SOX9) signaling axis was shown to rescue EndMT-associated endothelial dysfunction both in vitro and in vivo, especially under diabetic conditions. Overall, our study reveals an epigenetic modulatory role for simvastatin in repressing EndMT to confer protection against endothelial dysfunction.

11.
Br J Anaesth ; 130(3): 248-250, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682935

RESUMO

Perioperative organ injury is a frequent and major complication for the ∼240 million people undergoing surgery worldwide annually. Ischaemic preconditioning is a powerful technique that reduces organ injury in experimental models of heart, lung, gut, brain, and kidney ischaemia-reperfusion injury. However, ischaemic preconditioning has been a challenge to translate into clinical practice. We describe how utilising isolated pre-conditioned exosomes (secreted vesicles containing many cell-survival mediators), some of the translational hurdles of ischaemic preconditioning can be overcome. Delivery of exosomes in the perioperative period could become a promising new therapeutic strategy to prevent perioperative organ injury.


Assuntos
Exossomos , Precondicionamento Isquêmico Miocárdico , Precondicionamento Isquêmico , Traumatismo por Reperfusão , Humanos , Traumatismo por Reperfusão/prevenção & controle , Precondicionamento Isquêmico/métodos , Rim , Precondicionamento Isquêmico Miocárdico/métodos
12.
Sci Transl Med ; 15(680): eabp9952, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696485

RESUMO

The common aldehyde dehydrogenase 2 (ALDH2) alcohol flushing variant known as ALDH2*2 affects ∼8% of the world's population. Even in heterozygous carriers, this missense variant leads to a severe loss of ALDH2 enzymatic activity and has been linked to an increased risk of coronary artery disease (CAD). Endothelial cell (EC) dysfunction plays a determining role in all stages of CAD pathogenesis, including early-onset CAD. However, the contribution of ALDH2*2 to EC dysfunction and its relation to CAD are not fully understood. In a large genome-wide association study (GWAS) from Biobank Japan, ALDH2*2 was found to be one of the strongest single-nucleotide polymorphisms associated with CAD. Clinical assessment of endothelial function showed that human participants carrying ALDH2*2 exhibited impaired vasodilation after light alcohol drinking. Using human induced pluripotent stem cell-derived ECs (iPSC-ECs) and CRISPR-Cas9-corrected ALDH2*2 iPSC-ECs, we modeled ALDH2*2-induced EC dysfunction in vitro, demonstrating an increase in oxidative stress and inflammatory markers and a decrease in nitric oxide (NO) production and tube formation capacity, which was further exacerbated by ethanol exposure. We subsequently found that sodium-glucose cotransporter 2 inhibitors (SGLT2i) such as empagliflozin mitigated ALDH2*2-associated EC dysfunction. Studies in ALDH2*2 knock-in mice further demonstrated that empagliflozin attenuated ALDH2*2-mediated vascular dysfunction in vivo. Mechanistically, empagliflozin inhibited Na+/H+-exchanger 1 (NHE-1) and activated AKT kinase and endothelial NO synthase (eNOS) pathways to ameliorate ALDH2*2-induced EC dysfunction. Together, our results suggest that ALDH2*2 induces EC dysfunction and that SGLT2i may potentially be used as a preventative measure against CAD for ALDH2*2 carriers.


Assuntos
Doença da Artéria Coronariana , Células-Tronco Pluripotentes Induzidas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Aldeído-Desidrogenase Mitocondrial/genética , Estudo de Associação Genômica Ampla , Células-Tronco Pluripotentes Induzidas/metabolismo , Aldeído Desidrogenase
13.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36472910

RESUMO

Pain signals are relayed to the brain via a nociceptive system, and in rare cases, this nociceptive system contains genetic variants that can limit the pain response. Here, we questioned whether a human transient receptor potential vanilloid 1 (TRPV1) missense variant causes a resistance to noxious stimuli and, further, whether we could target this region with a cell-permeable peptide as a pain therapeutic. Initially using a computational approach, we identified a human K710N TRPV1 missense variant in an otherwise highly conserved region of mammalian TRPV1. After generating a TRPV1K710N-knockin mouse using CRISPR/Cas9, we discovered that the K710N variant reduced capsaicin-induced calcium influx in dorsal root ganglion neurons. The TRPV1K710N rodents also had less acute behavioral responses to noxious chemical stimuli and less hypersensitivity to nerve injury, while their response to noxious heat remained intact. Furthermore, blocking this K710 region in WT rodents using a cell-penetrating peptide limited acute behavioral responses to noxious stimuli and returned pain hypersensitivity induced by nerve injury to baseline levels. These findings identify K710 TRPV1 as a discrete site that is crucial for the control of nociception and provide insights into how to leverage rare genetic variants in humans to uncover fresh strategies for developing pain therapeutics.


Assuntos
Roedores , Canais de Cátion TRPV , Animais , Humanos , Camundongos , Capsaicina/farmacologia , Gânglios Espinais , Dor/genética , Limiar da Dor , Canais de Cátion TRPV/genética
14.
J Pharmacol Exp Ther, v.387, n. 1, 15-17, out. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5153
15.
J Pharmacol Exp Ther, v. 387, n. 1, out. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5088
16.
Chem Eng J ; 433(Pt 1)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36338580

RESUMO

Myocardial infarction (MI) is a major cause of disability and mortality worldwide. A cell permeable peptide V1-Cal has shown remarkable therapeutic effects on ML However, using V1-Cal to improve long-term cardiac function after MI is presently limited by its short half-life. Herein, we co-assembled V1-Cal with a well-known hydrogelator Nap-Phe-Phe-Tyr (NapFFY) to obtain a new supramolecular hydrogel V1-Cal/NapFFY. We found that the hydrogel could significantly enhance the therapeutic effects of V1-Cal on ventricular remodeling reduction and cardiac function improvement in a myocardial infarction rat model. In vitro experiments indicated that co-assembly of V1-Cal with NapFFY significantly increased mechanic strength of the hydrogel, enabling a sustained release of V1-Cal for more than two weeks. In vivo experiments supported that sustained release of V1-Cal from V1-Cal/NapFFY hydrogel could effectively decrease the expression and activation of TRPV1, reduce apoptosis and the release of inflammatory factors in a MI rat model. In particular, V1-Cal/NapFFY hydrogel significantly decreased infarct size and fibrosis, while improved cardiac function 28 days post MI. We anticipate that V1-Cal/NapFFY hydrogel could be used clinically to treat MI in the near future.

17.
Basic Res Cardiol ; 117(1): 56, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367592

RESUMO

Astrocytes play a key role in the response to injury and noxious stimuli, but its role in myocardial ischemia-reperfusion (I/R) injury remains largely unknown. Here we determined whether manipulation of spinal astrocyte activity affected myocardial I/R injury and the underlying mechanisms. By ligating the left coronary artery to establish an in vivo I/R rat model, we observed a 1.7-fold rise in glial fibrillary acidic protein (GFAP) protein level in spinal cord following myocardial I/R injury. Inhibition of spinal astrocytes by intrathecal injection of fluoro-citrate, an astrocyte inhibitor, decreased GFAP immunostaining and reduced infarct size by 29% relative to the I/R group. Using a Designer Receptor Exclusively Activated by Designer Drugs (DREADD) chemogenetic approach, we bi-directionally manipulated astrocyte activity employing GFAP promoter-driven Gq- or Gi-coupled signaling. The Gq-DREADD-mediated activation of spinal astrocytes caused transient receptor potential vanilloid 1 (TRPV1) activation and neuropeptide release leading to a 1.3-fold increase in infarct size, 1.2-fold rise in serum norepinephrine level and higher arrhythmia score relative to I/R group. In contrast, Gi-DREADD-mediated inhibition of spinal astrocytes suppressed TRPV1-mediated nociceptive signaling, resulting in 35% reduction of infarct size and 51% reduction of arrhythmia score from I/R group, as well as lowering serum norepinephrine level from 3158 ± 108 to 2047 ± 95 pg/mL. Further, intrathecal administration of TRPV1 or neuropeptide antagonists reduced infarct size and serum norepinephrine level. These findings demonstrate a functional role of spinal astrocytes in myocardial I/R injury and provide a novel potential therapeutic approach targeting spinal cord astrocytes for the prevention of cardiac injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Astrócitos/metabolismo , Medula Espinal/metabolismo , Arritmias Cardíacas , Infarto/metabolismo , Norepinefrina
19.
Biomolecules ; 12(6)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35740888

RESUMO

The discovery of aldehydes dates back to 1774 when Carl Wilhelm Scheele synthesized acetaldehyde [...].


Assuntos
Aldeído Desidrogenase , Aldeídos , Acetaldeído , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeídos/metabolismo
20.
Redox Biol ; 54: 102369, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751982

RESUMO

BACKGROUND: E-cigarette aerosol containing aldehydes, including acetaldehyde, are metabolized by the enzyme aldehyde dehydrogenase 2 (ALDH2). However, little is known how aldehyde exposure from e-cigarettes, when coupled with an inactivating ALDH2 genetic variant, ALDH2*2 (present in 8% of the world population), affects cardiovascular oxidative stress. OBJECTIVES: The study was to determine how e-cigarette aerosol exposure, coupled with genetics, impacts cardiovascular oxidative stress in wild type ALDH2 and ALDH2*2 knock-in mice. METHODS: Using selective ion flow mass spectrometry, we determined e-cigarette aerosol contains acetaldehyde levels 10-fold higher than formaldehyde or acrolein. Based on this finding, we tested how isolated ALDH2*2 primary cardiomyocytes respond to acetaldehyde and how intact ALDH2*2 knock-in rodents instrumented with telemeters respond physiologically and at the molecular level to 10 days of e-cigarette aerosol exposure relative to wild type ALDH2 rodents. RESULTS: For ALDH2*2 isolated cardiomyocytes, acetaldehyde (1 µM) caused a 4-fold greater peak calcium influx, 2-fold increase in ROS production and 2-fold increase in 4-HNE-induced protein adducts relative to wild-type ALDH2 cardiomyocytes. The heart rate in ALDH2*2 mice increased ∼200 beats/min, while, heart rate in ALDH2 mice increased ∼150 beats/min after 10 days of e-cigarette exposure, relative to air-exposed mice. E-cigarette aerosol exposure triggered ∼1.3 to 2-fold higher level of protein carbonylation, lipid peroxidation, and phosphorylation of NF-κB for both strains of mice, with this response exacerbated for ALDH2*2 mice. CONCLUSIONS: Our findings indicate people carrying an ALDH2*2 genetic variant may be more susceptible to increases in cardiovascular oxidative stress from e-cigarette aerosol exposure.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Acetaldeído/metabolismo , Acetaldeído/toxicidade , Aerossóis , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Aldeídos , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA