Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(3): 2318-2327, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36649642

RESUMO

We demonstrate the ability to tailor self-assembled growth of In0.5Ga0.5As quantum dots (QDs) on GaSb(111)A surfaces by molecular beam epitaxy. Spontaneous formation via the Volmer-Weber growth mode produces QDs with excellent structural and optical quality. By harnessing tensile strain to reduce their band gap energy, these QDs are characterized by light emission that extends into the midwave infrared wavelength range of 3.2-3.9 µm (0.318-0.388 eV). As we increase QD size, we can tune the band alignment from type-III to type-II, where light emission occurs due to interband recombination between quantum confined electrons in the InGaAs QDs and holes in the GaSb barriers. Of particular interest is an unusual blue-shift in emission wavelength with increasing QD size, which we attribute to the incorporation of Sb into the InGaAs QDs from the GaSb barriers. By expanding this approach to produce tensile-strained QDs from other narrow band gap semiconductors, we anticipate the development of a range of highly tunable mid-infrared light sources.

2.
Sci Rep ; 9(1): 18179, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796804

RESUMO

Driven by tensile strain, GaAs quantum dots (QDs) self-assemble on In0.52Al0.48As(111)A surfaces lattice-matched to InP substrates. In this study, we show that the tensile-strained self-assembly process for these GaAs(111)A QDs unexpectedly deviates from the well-known Stranski-Krastanov (SK) growth mode. Traditionally, QDs formed via the SK growth mode form on top of a flat wetting layer (WL) whose thickness is fixed. The inability to tune WL thickness has inhibited researchers' attempts to fully control QD-WL interactions in these hybrid 0D-2D quantum systems. In contrast, using microscopy, spectroscopy, and computational modeling, we demonstrate that for GaAs(111)A QDs, we can continually increase WL thickness with increasing GaAs deposition, even after the tensile-strained QDs (TSQDs) have begun to form. This anomalous SK behavior enables simultaneous tuning of both TSQD size and WL thickness. No such departure from the canonical SK growth regime has been reported previously. As such, we can now modify QD-WL interactions, with future benefits that include more precise control of TSQD band structure for infrared optoelectronics and quantum optics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA