Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Clin Pharmacol Ther ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164947

RESUMO

BLOODPAC is a public-private consortium that develops best practices, coordinates clinical and translational research, and manages the BLOODPAC Data Commons to broadly support the liquid biopsy community and accelerate regulatory review to aid patient accessibility. BLOODPAC previously recommended 11 preanalytical minimal technical data elements (MTDEs) for BLOODPAC-sponsored studies and data submitted to BLOODPAC Data Commons. The current landscape analysis evaluates the overlap of the BLOODPAC MTDEs with current best practices, guidelines, and standards documents related to clinical and research liquid biopsy applications. Our findings indicate an existing high degree of concordance among these documents. Where differences exist, the BLOODPAC preanalytical MTDEs can be considered a minimal practicable set for organizations to utilize. These MTDEs were developed following extensive examination of best practices and iterative conversations with the U.S. FDA. BLOODPAC recommends the use of these MTDEs in submissions to data commons and to support liquid biopsy clinical trials and research globally.

2.
JAMIA Open ; 7(2): ooae025, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38617994

RESUMO

Objectives: A data commons is a software platform for managing, curating, analyzing, and sharing data with a community. The Pandemic Response Commons (PRC) is a data commons designed to provide a data platform for researchers studying an epidemic or pandemic. Methods: The PRC was developed using the open source Gen3 data platform and is based upon consortium, data, and platform agreements developed by the not-for-profit Open Commons Consortium. A formal consortium of Chicagoland area organizations was formed to develop and operate the PRC. Results: The consortium developed a general PRC and an instance of it for the Chicagoland region called the Chicagoland COVID-19 Commons. A Gen3 data platform was set up and operated with policies, procedures, and controls for a NIST SP 800-53 revision 4 Moderate system. A consensus data model for the commons was developed, and a variety of datasets were curated, harmonized and ingested, including statistical summary data about COVID cases, patient level clinical data, and SARS-CoV-2 viral variant data. Discussion and conclusions: Given the various legal and data agreements required to operate a data commons, a PRC is designed to be in place and operating at a low level prior to the occurrence of an epidemic, with the activities increasing as required during an epidemic. A regional instance of a PRC can also be part of a broader data ecosystem or data mesh consisting of multiple regional commons supporting pandemic response through sharing regional data.

3.
Cancer Res ; 84(9): 1388-1395, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488507

RESUMO

Since 2014, the NCI has launched a series of data commons as part of the Cancer Research Data Commons (CRDC) ecosystem housing genomic, proteomic, imaging, and clinical data to support cancer research and promote data sharing of NCI-funded studies. This review describes each data commons (Genomic Data Commons, Proteomic Data Commons, Integrated Canine Data Commons, Cancer Data Service, Imaging Data Commons, and Clinical and Translational Data Commons), including their unique and shared features, accomplishments, and challenges. Also discussed is how the CRDC data commons implement Findable, Accessible, Interoperable, Reusable (FAIR) principles and promote data sharing in support of the new NIH Data Management and Sharing Policy. See related articles by Brady et al., p. 1384, Pot et al., p. 1396, and Kim et al., p. 1404.


Assuntos
Disseminação de Informação , National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/metabolismo , Disseminação de Informação/métodos , Pesquisa Biomédica , Genômica/métodos , Animais , Proteômica/métodos
4.
Cancer Res ; 84(9): 1384-1387, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488505

RESUMO

The NCI Cancer Research Data Commons (CRDC) is a collection of data commons, analysis platforms, and tools that make existing cancer data more findable and accessible by the cancer research community. In practice, the two biggest hurdles to finding and using data for discovery are the wide variety of models and ontologies used to describe data, and the dispersed storage of that data. Here, we outline core CRDC services to aggregate descriptive information from multiple studies for findability via a single interface and to provide a single access method that spans multiple data commons. See related articles by Wang et al., p. 1388, Pot et al., p. 1396, and Kim et al., p. 1404.


Assuntos
National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Pesquisa Biomédica/normas , Bases de Dados Factuais
6.
JAMIA Open ; 7(1): ooae004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38304249

RESUMO

Objective: The Pediatric Cancer Data Commons (PCDC)-a project of Data for the Common Good-houses clinical pediatric oncology data and utilizes the open-source Gen3 platform. To meet the needs of end users, the PCDC development team expanded the out-of-box functionality and developed additional custom features that should be useful to any group developing similar data commons. Materials and Methods: Modifications of the PCDC data portal software were implemented to facilitate desired functionality. Results: Newly developed functionality includes updates to authorization methods, expansion of filtering capabilities, and addition of data analysis functions. Discussion: We describe the process by which custom functionalities were developed. Features are open source and available to be implemented and adapted to suit needs of data portals that utilize the Gen3 platform. Conclusion: Data portals are indispensable tools for facilitating data sharing. Open-source infrastructure facilitates a modular and collaborative approach for meeting needs of end users and stakeholders.

7.
Stud Health Technol Inform ; 310: 735-739, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269906

RESUMO

High-resolution whole slide image scans of histopathology slides have been widely used in recent years for prediction in cancer. However, in some cases, clinical informatics practitioners may only have access to low-resolution snapshots of histopathology slides, not high-resolution scans. We evaluated strategies for training neural network prognostic models in non-small cell lung cancer (NSCLC) based on low-resolution snapshots, using data from the Veterans Affairs Precision Oncology Data Repository. We compared strategies without transfer learning, with transfer learning from general domain images, and with transfer learning from publicly available high-resolution histopathology scans. We found transfer learning from high-resolution scans achieved significantly better performance than other strategies. Our contribution provides a foundation for future development of prognostic models in NSCLC that incorporate data from low-resolution pathology slide snapshots alongside known clinical predictors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Informática Médica , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Medicina de Precisão , Aprendizado de Máquina
8.
Artigo em Inglês | MEDLINE | ID: mdl-38050021

RESUMO

Veterans are at an increased risk for prostate cancer, a disease with extraordinary clinical and molecular heterogeneity, compared with the general population. However, little is known about the underlying molecular heterogeneity within the veteran population and its impact on patient management and treatment. Using clinical and targeted tumor sequencing data from the National Veterans Affairs health system, we conducted a retrospective cohort study on 45 patients with advanced prostate cancer in the Veterans Precision Oncology Data Commons (VPODC), most of whom were metastatic castration-resistant. We characterized the mutational burden in this cohort and conducted unsupervised clustering analysis to stratify patients by molecular alterations. Veterans with prostate cancer exhibited a mutational landscape broadly similar to prior studies, including KMT2A and NOTCH1 mutations associated with neuroendocrine prostate cancer phenotype, previously reported to be enriched in veterans. We also identified several potential novel mutations in PTEN, MSH6, VHL, SMO, and ABL1 Hierarchical clustering analysis revealed two subgroups containing therapeutically targetable molecular features with novel mutational signatures distinct from those reported in the Catalogue of Somatic Mutations in Cancer database. The clustering approach presented in this study can potentially be used to clinically stratify patients based on their distinct mutational profiles and identify actionable somatic mutations for precision oncology.


Assuntos
Neoplasias da Próstata , Veteranos , Masculino , Humanos , Estudos Retrospectivos , Medicina de Precisão , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Oncologia , Mutação
9.
bioRxiv ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38106010

RESUMO

Spatial transcriptomics (ST) has enhanced RNA analysis in tissue biopsies, but interpreting these data is challenging without expert input. We present Automated Tissue Alignment and Traversal (ATAT), a novel computational framework designed to enhance ST analysis in the context of multiple and complex tissue architectures and morphologies, such as those found in biopsies of the gastrointestinal tract. ATAT utilizes self-supervised contrastive learning on hematoxylin and eosin (H&E) stained images to automate the alignment and traversal of ST data. This approach addresses a critical gap in current ST analysis methodologies, which rely heavily on manual annotation and pathologist expertise to delineate regions of interest for accurate gene expression modeling. Our framework not only streamlines the alignment of multiple ST samples, but also demonstrates robustness in modeling gene expression transitions across specific regions. Additionally, we highlight the ability of ATAT to traverse complex tissue topologies in real-world cases from various individuals and conditions. Our method successfully elucidates differences in immune infiltration patterns across the intestinal wall, enabling the modeling of transcriptional changes across histological layers. We show that ATAT achieves comparable performance to the state-of-the-art method, while alleviating the burden of manual annotation and enabling alignment of tissue samples with complex morphologies.

10.
J Am Med Inform Assoc ; 30(7): 1293-1300, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37192819

RESUMO

Research increasingly relies on interrogating large-scale data resources. The NIH National Heart, Lung, and Blood Institute developed the NHLBI BioData CatalystⓇ (BDC), a community-driven ecosystem where researchers, including bench and clinical scientists, statisticians, and algorithm developers, find, access, share, store, and compute on large-scale datasets. This ecosystem provides secure, cloud-based workspaces, user authentication and authorization, search, tools and workflows, applications, and new innovative features to address community needs, including exploratory data analysis, genomic and imaging tools, tools for reproducibility, and improved interoperability with other NIH data science platforms. BDC offers straightforward access to large-scale datasets and computational resources that support precision medicine for heart, lung, blood, and sleep conditions, leveraging separately developed and managed platforms to maximize flexibility based on researcher needs, expertise, and backgrounds. Through the NHLBI BioData Catalyst Fellows Program, BDC facilitates scientific discoveries and technological advances. BDC also facilitated accelerated research on the coronavirus disease-2019 (COVID-19) pandemic.


Assuntos
COVID-19 , Computação em Nuvem , Humanos , Ecossistema , Reprodutibilidade dos Testes , Pulmão , Software
11.
Sci Data ; 10(1): 120, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878917
12.
PLoS Comput Biol ; 19(3): e1010944, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913405

RESUMO

We introduce a self-describing serialized format for bulk biomedical data called the Portable Format for Biomedical (PFB) data. The Portable Format for Biomedical data is based upon Avro and encapsulates a data model, a data dictionary, the data itself, and pointers to third party controlled vocabularies. In general, each data element in the data dictionary is associated with a third party controlled vocabulary to make it easier for applications to harmonize two or more PFB files. We also introduce an open source software development kit (SDK) called PyPFB for creating, exploring and modifying PFB files. We describe experimental studies showing the performance improvements when importing and exporting bulk biomedical data in the PFB format versus using JSON and SQL formats.


Assuntos
Software , Vocabulário Controlado , Registros
13.
J Mol Diagn ; 25(3): 143-155, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36828596

RESUMO

The Blood Profiling Atlas in Cancer (BLOODPAC) Consortium is a collaborative effort involving stakeholders from the public, industry, academia, and regulatory agencies focused on developing shared best practices on liquid biopsy. This report describes the results from the JFDI (Just Freaking Do It) study, a BLOODPAC initiative to develop standards on the use of contrived materials mimicking cell-free circulating tumor DNA, to comparatively evaluate clinical laboratory testing procedures. Nine independent laboratories tested the concordance, sensitivity, and specificity of commercially available contrived materials with known variant-allele frequencies (VAFs) ranging from 0.1% to 5.0%. Each participating laboratory utilized its own proprietary evaluation procedures. The results demonstrated high levels of concordance and sensitivity at VAFs of >0.1%, but reduced concordance and sensitivity at a VAF of 0.1%; these findings were similar to those from previous studies, suggesting that commercially available contrived materials can support the evaluation of testing procedures across multiple technologies. Such materials may enable more objective comparisons of results on materials formulated in-house at each center in multicenter trials. A unique goal of the collaborative effort was to develop a data resource, the BLOODPAC Data Commons, now available to the liquid-biopsy community for further study. This resource can be used to support independent evaluations of results, data extension through data integration and new studies, and retrospective evaluation of data collection.


Assuntos
DNA Tumoral Circulante , Neoplasias Hematológicas , Neoplasias , Humanos , Estudos Retrospectivos , Neoplasias/genética , Biópsia Líquida/métodos
14.
Cancer Res ; 83(8): 1175-1182, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625843

RESUMO

Big data in healthcare can enable unprecedented understanding of diseases and their treatment, particularly in oncology. These data may include electronic health records, medical imaging, genomic sequencing, payor records, and data from pharmaceutical research, wearables, and medical devices. The ability to combine datasets and use data across many analyses is critical to the successful use of big data and is a concern for those who generate and use the data. Interoperability and data quality continue to be major challenges when working with different healthcare datasets. Mapping terminology across datasets, missing and incorrect data, and varying data structures make combining data an onerous and largely manual undertaking. Data privacy is another concern addressed by the Health Insurance Portability and Accountability Act, the Common Rule, and the General Data Protection Regulation. The use of big data is now included in the planning and activities of the FDA and the European Medicines Agency. The willingness of organizations to share data in a precompetitive fashion, agreements on data quality standards, and institution of universal and practical tenets on data privacy will be crucial to fully realizing the potential for big data in medicine.


Assuntos
Big Data , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão , Armazenamento e Recuperação da Informação
15.
Cancer Res ; 83(8): 1183-1190, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625851

RESUMO

The analysis of big healthcare data has enormous potential as a tool for advancing oncology drug development and patient treatment, particularly in the context of precision medicine. However, there are challenges in organizing, sharing, integrating, and making these data readily accessible to the research community. This review presents five case studies illustrating various successful approaches to addressing such challenges. These efforts are CancerLinQ, the American Association for Cancer Research Project GENIE, Project Data Sphere, the National Cancer Institute Genomic Data Commons, and the Veterans Health Administration Clinical Data Initiative. Critical factors in the development of these systems include attention to the use of robust pipelines for data aggregation, common data models, data deidentification to enable multiple uses, integration of data collection into physician workflows, terminology standardization and attention to interoperability, extensive quality assurance and quality control activity, incorporation of multiple data types, and understanding how data resources can be best applied. By describing some of the emerging resources, we hope to inspire consideration of the secondary use of such data at the earliest possible step to ensure the proper sharing of data in order to generate insights that advance the understanding and the treatment of cancer.


Assuntos
Big Data , Neoplasias , Humanos , Estados Unidos/epidemiologia , Neoplasias/genética , Neoplasias/terapia , Oncologia , Atenção à Saúde
18.
Ann Epidemiol ; 74: 118-124, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35940395

RESUMO

PURPOSE: During the initial 12 months of the pandemic, racial and ethnic disparities in COVID-19 death rates received considerable attention but it has been unclear whether disparities in death rates were due to disparities in case fatality rates (CFRs), incidence rates or both. We examined differences in observed COVID-19 CFRs between U.S. White, Black/African American, and Latinx individuals during this period. METHODS: Using data from the COVID Tracking Project and the Centers for Disease Control and Prevention COVID-19 Case Surveillance Public Use dataset, we calculated CFR ratios comparing Black and Latinx to White individuals, both overall and separately by age group. We also used a model of monthly COVID-19 deaths to estimate CFR ratios, adjusting for age, gender, and differences across states and time. RESULTS: Overall Black and Latinx individuals had lower CFRs than their White counterparts. However, when adjusting for age, Black and Latinx had higher CFRs than White individuals among those younger than 65. CFRs varied substantially across states and time. CONCLUSIONS: Disparities in COVID-19 case fatality among U.S. Black and Latinx individuals under age 65 were evident during the first year of the pandemic. Understanding racial and ethnic differences in COVID-19 CFRs is challenging due to limitations in available data.


Assuntos
COVID-19 , Idoso , Etnicidade , Disparidades nos Níveis de Saúde , Humanos , Pandemias , SARS-CoV-2 , Estados Unidos/epidemiologia
19.
NPJ Aging ; 8(1): 7, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35927250

RESUMO

The prevalence of major neurocognitive disorders is expected to rise over the next 3 decades as the number of adults ≥65 years old increases. Noninvasive screening capable of flagging individuals most at risk of subsequent cognitive decline could trigger closer monitoring and preventive strategies. In this study, we used free-living accelerometry data to forecast cognitive decline within 1- or 5-years in older adults without dementia using two cohorts. The first cohort, recruited in the south side of Chicago, wore hip accelerometers for 7 continuous days. The second cohort, nationally recruited, wore wrist accelerometers continuously for 72 h. Separate classifier models forecasted 1-year cognitive decline with over 85% accuracy using hip data and forecasted 5-year cognitive decline with nearly 70% accuracy using wrist data, significant improvements compared to demographics and comorbidities alone. The proposed models are readily translatable to clinical practices serving ageing populations.

20.
Perspect Health Inf Manag ; 19(Spring): 1d, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692848

RESUMO

Finding, accessing, sharing, and analyzing patient data from a clinical setting for collaborative research has continually proven to be a challenge in healthcare organizations. The human and technological architecture required to perform these services exist at the largest academic institutions but are usually under-funded. At smaller, less academically focused healthcare organizations across the United States, where the majority of care is delivered, they are generally absent. Here we propose a solution called the Learning Healthcare System Data Commons where cost is usage-based and the most basic elements are designed to be extensible, allowing it to evolve with the changing landscape of healthcare. Herein we also discuss our reference implementation of this platform tailored specifically for operational sustainability and governance using the data generated in a hospital setting for research, quality, and educational purposes.


Assuntos
Sistema de Aprendizagem em Saúde , Atenção à Saúde , Hospitais , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA