Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 139(18): 2770-2781, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35226739

RESUMO

Small ubiquitin-like modifier (SUMO) is a member of a ubiquitin-like protein superfamily. SUMOylation is a reversible posttranslational modification that has been implicated in the regulation of various cellular processes including inflammatory responses and expression of type 1 interferons (IFN1). In this report, we have explored the activity of the selective small molecule SUMOylation inhibitor subasumstat (TAK-981) in promoting antitumor innate immune responses. We demonstrate that treatment with TAK-981 results in IFN1-dependent macrophage and natural killer (NK) cell activation, promoting macrophage phagocytosis and NK cell cytotoxicity in ex vivo assays. Furthermore, pretreatment with TAK-981 enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells in combination with the anti-CD20 antibody rituximab. In vivo studies demonstrated enhanced antitumor activity of TAK-981 and rituximab in CD20+ lymphoma xenograft models. Combination of TAK-981 with anti-CD38 antibody daratumumab also resulted in enhanced antitumor activity. TAK-981 is currently being studied in phase 1 clinical trials (#NCT03648372, #NCT04074330, #NCT04776018, and #NCT04381650; www.clinicaltrials.gov) for the treatment of patients with lymphomas and solid tumors.


Assuntos
Linfoma , Sumoilação , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20 , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Macrófagos/metabolismo , Rituximab/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico
2.
Sci Transl Med ; 13(611): eaba7791, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524860

RESUMO

SUMOylation, the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to protein substrates, has been reported to suppress type I interferon (IFN1) responses. TAK-981, a selective small-molecule inhibitor of SUMOylation, pharmacologically reactivates IFN1 signaling and immune responses against cancers. In vivo treatment of wild-type mice with TAK-981 up-regulated IFN1 gene expression in blood cells and splenocytes. Ex vivo treatment of mouse and human dendritic cells promoted their IFN1-dependent activation, and vaccination studies in mice demonstrated stimulation of antigen cross-presentation and T cell priming in vivo. TAK-981 also directly stimulated T cell activation, driving enhanced T cell sensitivity and response to antigen ex vivo. Consistent with these observations, TAK-981 inhibited growth of syngeneic A20 and MC38 tumors in mice, dependent upon IFN1 signaling and CD8+ T cells, and associated with increased intratumoral T and natural killer cell number and activation. Combination of TAK-981 with anti-PD1 or anti-CTLA4 antibodies improved the survival of mice bearing syngeneic CT26 and MC38 tumors. In conclusion, TAK-981 is a first-in-class SUMOylation inhibitor that promotes antitumor immune responses through activation of IFN1 signaling. TAK-981 is currently being studied in phase 1 clinical trials (NCT03648372, NCT04074330, NCT04776018, and NCT04381650) for the treatment of patients with solid tumors and lymphomas.


Assuntos
Imunidade , Sumoilação
3.
J Med Chem ; 64(5): 2501-2520, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33631934

RESUMO

SUMOylation is a reversible post-translational modification that regulates protein function through covalent attachment of small ubiquitin-like modifier (SUMO) proteins. The process of SUMOylating proteins involves an enzymatic cascade, the first step of which entails the activation of a SUMO protein through an ATP-dependent process catalyzed by SUMO-activating enzyme (SAE). Here, we describe the identification of TAK-981, a mechanism-based inhibitor of SAE which forms a SUMO-TAK-981 adduct as the inhibitory species within the enzyme catalytic site. Optimization of selectivity against related enzymes as well as enhancement of mean residence time of the adduct were critical to the identification of compounds with potent cellular pathway inhibition and ultimately a prolonged pharmacodynamic effect and efficacy in preclinical tumor models, culminating in the identification of the clinical molecule TAK-981.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Ácidos Sulfônicos/uso terapêutico , Sumoilação/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Camundongos , Estrutura Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Relação Estrutura-Atividade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Neurosci ; 29(8): 2486-95, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19244523

RESUMO

The amygdala processes multiple, dissociable properties of sensory stimuli. Given its central location within a dense network of reciprocally connected regions, it is reasonable to expect that basolateral amygdala (BLA) neurons should produce a rich repertoire of dynamical responses to taste stimuli. Here, we examined single BLA neuron taste responses in awake rats and report the existence of two distinct subgroups of BLA taste neurons operating simultaneously during perceptual processing. One neuron type produced long, protracted responses with dynamics that were strikingly similar to those previously observed in gustatory cortex. These responses reflect cooperation between amygdala and cortex for the purposes of processing palatability. A second type of BLA taste neuron may be part of the system often described as being responsible for reward learning: these neurons produced very brief, short-latency responses to rewarding stimuli; when the rat participated in procuring the taste by pressing a lever in response to a tone, however, those phasic taste responses vanished, phasic responses to the tone appearing instead. Our data provide strong evidence that the neural handling of taste is actually a distributed set of processes and that BLA is a nexus of these multiple processes. These results offer new insights into how amygdala imbues naturalistic sensory stimuli with value.


Assuntos
Tonsila do Cerebelo/citologia , Preferências Alimentares/fisiologia , Neurônios/fisiologia , Recompensa , Paladar/fisiologia , Potenciais de Ação , Análise de Variância , Animais , Ácido Cítrico/administração & dosagem , Condicionamento Operante , Feminino , Neurônios/classificação , Quinina/administração & dosagem , Ratos , Ratos Long-Evans , Tempo de Reação/fisiologia , Autoadministração/métodos , Cloreto de Sódio/administração & dosagem , Sacarose/administração & dosagem , Privação de Água/fisiologia
6.
J Neurosci ; 28(11): 2864-73, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18337417

RESUMO

Emotional learning requires the coordinated action of neural populations in limbic and cortical networks. Here, we performed simultaneous extracellular recordings from gustatory cortical (GC) and basolateral amygdalar (BLA) neural ensembles as awake, behaving rats learned to dislike the taste of saccharin [via conditioned taste aversion (CTA)]. Learning-related changes in single-neuron sensory responses were observed in both regions, but the nature of the changes was region specific. In GC, most changes were restricted to relatively late aspects of the response (starting approximately 1.0 s after stimulus administration), supporting our hypothesis that in this paradigm palatability-related information resides exclusively in later cortical responses. In contrast, and consistent with data suggesting the amygdala's primary role in judging stimulus palatability, CTA altered all components of BLA taste responses, including the earliest. Finally, learning caused dramatic increases in the functional connectivity (measured in terms of cross-correlation peak heights) between pairs of simultaneously recorded BLA and GC neurons, increases that were evident only during taste processing. Our simultaneous assays of the activity of single neurons in multiple relevant brain regions across learning suggest that the transmission of taste information through amygdala-cortical circuits plays a vital role in CTA memory formation.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Feminino , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA