Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3392, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296100

RESUMO

Dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects against cardiovascular disease by metabolising the risk factor asymmetric dimethylarginine (ADMA). However, the question whether the second DDAH isoform, DDAH2, directly metabolises ADMA has remained unanswered. Consequently, it is still unclear if DDAH2 may be a potential target for ADMA-lowering therapies or if drug development efforts should focus on DDAH2's known physiological functions in mitochondrial fission, angiogenesis, vascular remodelling, insulin secretion, and immune responses. Here, an international consortium of research groups set out to address this question using in silico, in vitro, cell culture, and murine models. The findings uniformly demonstrate that DDAH2 is incapable of metabolising ADMA, thus resolving a 20-year controversy and providing a starting point for the investigation of alternative, ADMA-independent functions of DDAH2.


Assuntos
Amidoidrolases , Arginina , Camundongos , Animais , Amidoidrolases/metabolismo , Arginina/metabolismo , Óxido Nítrico/metabolismo
2.
Toxins (Basel) ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37104209

RESUMO

Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.


Assuntos
Fusarium , Micotoxinas , Animais , Humanos , Contaminação de Alimentos/análise , Micotoxinas/toxicidade , Micotoxinas/análise , Insetos , Grão Comestível/química
3.
Biochimie ; 202: 110-122, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964771

RESUMO

AGXT1 encodes alanine:glyoxylate aminotransferase 1 (AGT1), a liver peroxisomal pyridoxal 5'-phosphate dependent-enzyme whose deficit causes Primary Hyperoxaluria Type 1 (PH1). PH1 is a rare disease characterized by overproduction of oxalate, first leading to kidney stones formation, and possibly evolving to life-threatening systemic oxalosis. A minority of PH1 patients is responsive to pyridoxine, while the option for non-responders is liver-kidney transplantation. Therefore, huge efforts are currently focused on the identification of new therapies, including the promising approaches based on RNA silencing recently approved. Many PH1-associated mutations are missense and lead to a variety of kinetic and/or folding defects on AGT1. In this context, the availability of a reliable in vitro disease model would be essential to better understand the phenotype of known or newly-identified pathogenic variants as well as to test novel drug candidates. Here, we took advantage of the CRISPR/Cas9 technology to specifically knock-out AGXT1 in HepG2 cells, a hepatoma-derived cell model exhibiting a conserved glyoxylate metabolism. AGXT1-KO HepG2 displayed null AGT1 expression and significantly reduced transaminase activity leading to an enhanced secretion of oxalate upon glycolate challenge. Known pathogenic AGT1 variants expressed in AGXT1-KO HepG2 cells showed alteration in both protein levels and specific transaminase activity, as well as a partial mitochondrial mistargeting when associated with a common polymorphism. Notably, pyridoxine treatment was able to partially rescue activity and localization of clinically-responsive variants. Overall, our data validate AGXT1-KO HepG2 cells as a novel cellular model to investigate PH1 pathophysiology, and as a platform for drug discovery and development.


Assuntos
Sistemas CRISPR-Cas , Piridoxina , Humanos , Células Hep G2 , Piridoxina/farmacologia , Transaminases/genética , Oxalatos , Fosfato de Piridoxal
4.
J Med Chem ; 65(14): 9718-9734, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35830169

RESUMO

Primary hyperoxaluria type I (PH1) is a rare kidney disease due to the deficit of alanine:glyoxylate aminotransferase (AGT), a pyridoxal-5'-phosphate-dependent enzyme responsible for liver glyoxylate detoxification, which in turn prevents oxalate formation and precipitation as kidney stones. Many PH1-associated missense mutations cause AGT misfolding. Therefore, the use of pharmacological chaperones (PCs), small molecules that promote correct folding, represents a useful therapeutic option. To identify ligands acting as PCs for AGT, we first performed a small screening of commercially available compounds. We tested each molecule by a dual approach aimed at defining the inhibition potency on purified proteins and the chaperone activity in cells expressing a misfolded variant associated with PH1. We then performed a chemical optimization campaign and tested the resulting synthetic molecules using the same approach. Overall, the results allowed us to identify a promising hit compound for AGT and draw conclusions about the requirements for optimal PC activity.


Assuntos
Hiperoxalúria Primária , Humanos , Hiperoxalúria Primária/tratamento farmacológico , Ligantes , Mutação , Dobramento de Proteína , Transaminases/metabolismo
5.
Protein Sci ; 31(5): e4303, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481644

RESUMO

The conformational landscape of a protein is constantly expanded by genetic variations that have a minimal impact on the function(s) while causing subtle effects on protein structure. The wider the conformational space sampled by these variants, the higher the probabilities to adapt to changes in environmental conditions. However, the probability that a single mutation may result in a pathogenic phenotype also increases. Here we present a paradigmatic example of how protein evolution balances structural stability and dynamics to maximize protein adaptability and preserve protein fitness. We took advantage of known genetic variations of human alanine:glyoxylate aminotransferase (AGT1), which is present as a common major allelic form (AGT-Ma) and a minor polymorphic form (AGT-Mi) expressed in 20% of Caucasian population. By integrating crystallographic studies and molecular dynamics simulations, we show that AGT-Ma is endowed with structurally unstable (frustrated) regions, which become disordered in AGT-Mi. An in-depth biochemical characterization of variants from an anticonsensus library, encompassing the frustrated regions, correlates this plasticity to a fitness window defined by AGT-Ma and AGT-Mi. Finally, co-immunoprecipitation analysis suggests that structural frustration in AGT1 could favor additional functions related to protein-protein interactions. These results expand our understanding of protein structural evolution by establishing that naturally occurring genetic variations tip the balance between stability and frustration to maximize the ensemble of conformations falling within a well-defined fitness window, thus expanding the adaptability potential of the protein.


Assuntos
Alanina , Transaminases , Alanina/metabolismo , Alelos , Mutação , Transaminases/química
6.
Front Mol Biosci ; 8: 695205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395527

RESUMO

The deficit of human ornithine aminotransferase (hOAT) is responsible for gyrate atrophy (GA), a rare recessive inherited disorder. Although more than 60 disease-associated mutations have been identified to date, the molecular mechanisms explaining how each mutation leads to the deficit of OAT are mostly unknown. To fill this gap, we considered six representative missense mutations present in homozygous patients concerning residues spread over the hOAT structure. E. coli expression, spectroscopic, kinetic and bioinformatic analyses, reveal that the R154L and G237D mutations induce a catalytic more than a folding defect, the Q90E and R271K mutations mainly impact folding efficiency, while the E318K and C394Y mutations give rise to both folding and catalytic defects. In a human cellular model of disease folding-defective variants, although at a different extent, display reduced protein levels and/or specific activity, due to increased aggregation and/or degradation propensity. The supplementation with Vitamin B6, to mimic a treatment strategy available for GA patients, does not significantly improve the expression/activity of folding-defective variants, in contrast with the clinical responsiveness of patients bearing the E318K mutation. Thus, we speculate that the action of vitamin B6 could be also independent of hOAT. Overall, these data represent a further effort toward a comprehensive analysis of GA pathogenesis at molecular and cellular level, with important relapses for the improvement of genotype/phenotype correlations and the development of novel treatments.

7.
J Pers Med ; 11(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917320

RESUMO

Peroxisomal matrix proteins are transported into peroxisomes in a fully-folded state, but whether multimeric proteins are imported as monomers or oligomers is still disputed. Here, we used alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal 5'-phosphate (PLP)-dependent enzyme, whose deficit causes primary hyperoxaluria type I (PH1), as a model protein and compared the intracellular behavior and peroxisomal import of native dimeric and artificial monomeric forms. Monomerization strongly reduces AGT intracellular stability and increases its aggregation/degradation propensity. In addition, monomers are partly retained in the cytosol. To assess possible differences in import kinetics, we engineered AGT to allow binding of a membrane-permeable dye and followed its intracellular trafficking without interfering with its biochemical properties. By fluorescence recovery after photobleaching, we measured the import rate in live cells. Dimeric and monomeric AGT displayed a similar import rate, suggesting that the oligomeric state per se does not influence import kinetics. However, when dimerization is compromised, monomers are prone to misfolding events that can prevent peroxisomal import, a finding crucial to predicting the consequences of PH1-causing mutations that destabilize the dimer. Treatment with pyridoxine of cells expressing monomeric AGT promotes dimerization and folding, thus, demonstrating the chaperone role of PLP. Our data support a model in which dimerization represents a potential key checkpoint in the cytosol at the crossroad between misfolding and correct targeting, a possible general mechanism for other oligomeric peroxisomal proteins.

8.
Front Biosci (Landmark Ed) ; 26(12): 1627-1642, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34994177

RESUMO

Cells have evolved sophisticated molecular control systems to maximize the efficiency of the folding process. However, any subtle alteration of the environment or the protein can lead to misfolding or affect the conformational plasticity of the native states. It has been widely demonstrated that misfolding and/or conformational instability are the underlying mechanisms of several rare disorders caused by enzymatic deficits. In fact, disease-causing mutations often lead to the substitution of amino acids that are crucial for the achievement of a folded conformation, or play a role on the equilibrium between native-state conformers. One of the promising approaches to treat conformational disorders is the use of pharmacological chaperones (PCs), small molecules that specifically bind a target protein and stabilize a functional fold, thus increasing the amount of functionally active enzyme. Molecules acting as PCs are usually coenzymes, substrate analogues behaving as competitive inhibitors, or allosteric modulators. In this review, the general features of PCs are described, along with three examples of diseases (Gaucher disease, Phenylketonuria, and Primary Hyperoxaluria) in which this approach is currently under study at preclinical and/or clinical level.


Assuntos
Doença de Gaucher , Deficiências na Proteostase , Aminoácidos , Humanos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/genética
9.
Molecules ; 25(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517272

RESUMO

Neurodegenerative diseases are associated with increased levels of nitric oxide (NO) mainly produced by microglial cells through inducible nitric oxide synthase (iNOS) whose expression is induced by inflammatory stimuli. NO can both exert cytotoxic functions and induce a metabolic switch by inhibiting oxidative phosphorylation and upregulating glycolytic flux. Here, we investigated whether two newly synthesized acetamidine based iNOS inhibitors, namely CM292 and CM544, could inhibit lipopolysaccharide (LPS)-induced BV2 microglial cell activation, focusing on both inflammatory and metabolic profiles. We found that CM292 and CM544, without affecting iNOS protein expression, reduced NO production and reverted LPS-induced inflammatory and cytotoxic response. Furthermore, in the presence of the inflammatory stimulus, both the inhibitors increased the expression of glycolytic enzymes. In particular, CM292 significantly reduced nuclear accumulation of pyruvate kinase M2, increased mitochondrial membrane potential and oxygen consumption rate, and augmented the expression of pyruvate dehydrogenase, pointing to a metabolic switch toward oxidative phosphorylation. These data confirm the role played by NO in the connection between cell bioenergetics profile and inflammation, and suggest the potential usefulness of iNOS inhibitors in redirecting microglia from detrimental to pro-regenerative phenotype.


Assuntos
Amidinas/química , Amidinas/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico/metabolismo , Prolina/análogos & derivados , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Prolina/farmacologia , Transdução de Sinais
10.
Biochem J ; 476(24): 3751-3768, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31794008

RESUMO

Peroxisomal alanine:glyoxylate aminotransferase (AGT) is responsible for glyoxylate detoxification in human liver and utilizes pyridoxal 5'-phosphate (PLP) as coenzyme. The deficit of AGT leads to Primary Hyperoxaluria Type I (PH1), a rare disease characterized by calcium oxalate stones deposition in the urinary tract as a consequence of glyoxylate accumulation. Most missense mutations cause AGT misfolding, as in the case of the G41R, which induces aggregation and proteolytic degradation. We have investigated the interaction of wild-type AGT and the pathogenic G41R variant with d-cycloserine (DCS, commercialized as Seromycin), a natural product used as a second-line treatment of multidrug-resistant tuberculosis, and its synthetic enantiomer l-cycloserine (LCS). In contrast with evidences previously reported on other PLP-enzymes, both ligands are AGT reversible inhibitors showing inhibition constants in the micromolar range. While LCS undergoes half-transamination generating a ketimine intermediate and behaves as a classical competitive inhibitor, DCS displays a time-dependent binding mainly generating an oxime intermediate. Using a mammalian cellular model, we found that DCS, but not LCS, is able to promote the correct folding of the G41R variant, as revealed by its increased specific activity and expression as a soluble protein. This effect also translates into an increased glyoxylate detoxification ability of cells expressing the variant upon treatment with DCS. Overall, our findings establish that DCS could play a role as pharmacological chaperone, thus suggesting a new line of intervention against PH1 based on a drug repositioning approach. To a widest extent, this strategy could be applied to other disease-causing mutations leading to AGT misfolding.


Assuntos
Ciclosserina/análogos & derivados , Ciclosserina/farmacologia , Hiperoxalúria Primária/genética , Transaminases/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Mutação , Ligação Proteica , Conformação Proteica , Transaminases/antagonistas & inibidores , Transaminases/genética
11.
Mol Cell Neurosci ; 94: 23-31, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439413

RESUMO

Neuroinflammation, i.e. self-propelling progressive cycle of microglial activation and neuron damage, as well as improper protein folding, are recognized as major culprits of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Mutations in several proteins have been linked to ALS pathogenesis, including the G93A mutation in the superoxide dismutase 1 (SOD1) enzyme. SOD1(G93A) mutant is prone to aggregate thus inducing both oxidative stress and neuroinflammation. In this study we used hSOD1(G93A) microglial cells to investigate the effects of the antioxidant and anti-inflammatory cyclic dipeptide (His-Pro) on LPS-induced inflammasome activation. We found that cyclo(His-Pro) inhibits NLRP3 inflammasome activation by reducing protein nitration via reduction in NO and ROS levels, indicative of lower peroxynitrite generation by LPS. Low levels in peroxynitrite are related to NF-κB inhibition responsible for iNOS down-regulation and NO dampening. On the other hand, cyclo(His-Pro)-mediated ROS attenuation, not linked to Nrf2 activation in this cellular model, is ascribed to increased soluble SOD1 activity due to the up-regulation of Hsp70 and Hsp27 expression. Conclusively, our results, besides corroborating the anti-inflammatory properties of cyclo(His-Pro), highlight a novel role of the cyclic dipeptide as a proteostasis regulator, and therefore a good candidate for the treatment of ALS and other misfolding diseases.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Inflamassomos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Inflamassomos/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Neurônios Motores/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/farmacologia
12.
Hum Mol Genet ; 28(1): 1-15, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215702

RESUMO

Most pathogenic missense mutations cause specific molecular phenotypes through protein destabilization. However, how protein destabilization is manifested as a given molecular phenotype is not well understood. We develop here a structural and energetic approach to describe mutational effects on specific traits such as function, regulation, stability, subcellular targeting or aggregation propensity. This approach is tested using large-scale experimental and structural perturbation analyses in over thirty mutations in three different proteins (cancer-associated NQO1, transthyretin related with amyloidosis and AGT linked to primary hyperoxaluria type I) and comprising five very common pathogenic mechanisms (loss-of-function and gain-of-toxic function aggregation, enzyme inactivation, protein mistargeting and accelerated degradation). Our results revealed that the magnitude of destabilizing effects and, particularly, their propagation through the structure to promote disease-associated conformational states largely determine the severity and molecular mechanisms of disease-associated missense mutations. Modulation of the structural perturbation at a mutated site is also shown to cause switches between different molecular phenotypes. When very common disease-associated missense mutations were investigated, we also found that they were not among the most deleterious possible missense mutations at those sites, and required additional contributions from codon bias and effects of CpG sites to explain their high frequency in patients. Our work sheds light on the molecular basis of pathogenic mechanisms and genotype-phenotype relationships, with implications for discriminating between pathogenic and neutral changes within human genome variability from whole genome sequencing studies.


Assuntos
Mutação de Sentido Incorreto/fisiologia , Proteínas/genética , Relação Estrutura-Atividade , Animais , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Doença , Humanos , Mutação , Mutação de Sentido Incorreto/genética , Patologia , Fenótipo , Conformação Proteica , Proteínas/fisiologia
13.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3629-3638, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251682

RESUMO

Gyrate atrophy (GA) is a rare recessive disorder characterized by progressive blindness, chorioretinal degeneration and systemic hyperornithinemia. GA is caused by point mutations in the gene encoding ornithine δ-aminotransferase (OAT), a tetrameric pyridoxal 5'-phosphate-dependent enzyme catalysing the transamination of l-ornithine and α-ketoglutarate to glutamic-γ-semialdehyde and l-glutamate in mitochondria. More than 50 OAT variants have been identified, but their molecular and cellular properties are mostly unknown. A subset of patients is responsive to pyridoxine administration, although the mechanisms underlying responsiveness have not been clarified. Herein, we studied the effects of the V332M mutation identified in pyridoxine-responsive patients. The Val332-to-Met substitution does not significantly affect the spectroscopic and kinetic properties of OAT, but during catalysis it makes the protein prone to convert into the apo-form, which undergoes unfolding and aggregation under physiological conditions. By using the CRISPR/Cas9 technology we generated a new cellular model of GA based on HEK293 cells knock-out for the OAT gene (HEK-OAT_KO). When overexpressed in HEK-OAT_KO cells, the V332M variant is present in an inactive apodimeric form, but partly shifts to the catalytically-competent holotetrameric form in the presence of exogenous PLP, thus explaining the responsiveness of these patients to pyridoxine administration. Overall, our data represent the first integrated molecular and cellular analysis of the effects of a pathogenic mutation in OAT. In addition, we validated a novel cellular model for the disease that could prove instrumental to define the molecular defect of other GA-causing variants, as well as their responsiveness to pyridoxine and other putative drugs.


Assuntos
Atrofia Girata/genética , Ornitina-Oxo-Ácido Transaminase/genética , Agregação Patológica de Proteínas/genética , Fosfato de Piridoxal/metabolismo , Complexo Vitamínico B/farmacologia , Sistemas CRISPR-Cas/genética , Coenzimas/metabolismo , Ensaios Enzimáticos , Técnicas de Inativação de Genes , Atrofia Girata/tratamento farmacológico , Atrofia Girata/patologia , Células HEK293 , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Ornitina-Oxo-Ácido Transaminase/metabolismo , Mutação Puntual , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/patologia , Piridoxina/farmacologia , Piridoxina/uso terapêutico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resultado do Tratamento , Complexo Vitamínico B/uso terapêutico
14.
Curr Protein Pept Sci ; 19(8): 805-812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29708066

RESUMO

Protein function is dependent on assumption of the correct three-dimensional structure, achieved through the folding process. As a central element in ensuring cellular homeostasis, proteostasis i.e. the control of correct protein folding, trafficking and degradation, is a highly regulated process ensured by three integrated molecular pathways: i) the unfolded protein response (UPR) which is activated by the engulfment of misfolded proteins and results in protein re-folding through the expression of chaperones; ii) the ubiquitin-proteasome system (UPS) which 'flags' misfolded proteins with ubiquitin, directing them to the 26S proteasome for proteolytic degradation; iii) autophagy that, through lysosomes, removes misfolded or aggregated proteins. All three of these proteostatic controls can be impaired by the aging process and by pathological mutations highlighting the potential role of proteostasis in conditions associated with aging such as neurodegeneration, type 2 diabetes and cancer. Indeed, neurodegenerative diseases are characterised by an interconnected triumvirate of deregulated proteostasis, neuroinflammation (i.e. the uncontrolled activation of microglial cells), and oxidative stress (i.e. the unbuffered increase in reactive oxygen species). The transcription factor Nrf2, classically associated with protection against oxidative stress, can also modulate the UPR, UPS and autophagy, while inhibiting the activation of NF-kB, the key transcription factor of the inflammatory response. In this review we focus on recent data from our laboratory and others demonstrating that the protective Nrf2 pathway can be activated by the endogenous cyclic dipeptide (His-Pro), thereby driving neuroprotective effects in different pathological settings. In this context we discuss the possible utility of clyclo (His-Pro) as a promising future therapeutic option for protein misfolding disorders.


Assuntos
Doenças Neurodegenerativas/metabolismo , Peptídeos Cíclicos/metabolismo , Piperazinas/metabolismo , Proteostase , Animais , Autofagia , Morte Celular , Sobrevivência Celular , Humanos , NF-kappa B/metabolismo , Doenças Neurodegenerativas/terapia , Estresse Oxidativo , Conformação Proteica , Dobramento de Proteína , Proteólise , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/terapia , Transdução de Sinais
15.
Mol Neurobiol ; 55(3): 2350-2361, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28357805

RESUMO

Neuroinflammation, characterized by the appearance of reactive microglial and astroglial cells, is one of the several pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a fast-progressing and fatal neurodegenerative disease. Cerebrospinal fluid and spinal cord of ALS patients and SOD1 mutant mice show high concentrations of IL-1ß. This interleukin, expressed as an inactive precursor, undergoes a proteolytic maturation by caspase1, whose activation, in turn, depends on inflammasomes. Whether and how inflammasome is activated in ALS models is still to be clarified. The mechanism of inflammasome activation was studied in murine microglial cells overexpressing hSOD1(G93A) and verified in the spinal cord of hSOD1(G93A) mice. Murine microglial hSOD1(G93A) cells express all the inflammasome components and LPS activates caspase1 leading to an increase in the secretion of IL-1ß. By activating NF-κB, LPS increases ROS and NO levels that spontaneously react to form peroxynitrite, thus leading to protein nitration. Reduction in peroxynitrite levels results in a decrease in caspase1 activity. Protein nitration and caspase1 activity are concomitantly increased in the spinal cord of pre-symptomatic SOD1(G93A) mice. Oxidative/nitrosative stress induces peroxynitrite formation that may be a key trigger of caspase1/inflammasome activation. Peroxynitrite formation may play a critical role in inflammasome activation and might be exploited as potential therapeutic target for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular Transformada , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Superóxido Dismutase-1/genética
16.
Oncotarget ; 8(40): 67506-67518, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978049

RESUMO

In prostate cancer, oxidative stress and the subsequent Nrf2 activation promote the survival of cancer cells and acquired chemoresistance. Nrf2 links prostate cancer to endoplasmic reticulum stress, an event that triggers the unfolded protein response, aiming to restore cellular homeostasis as well as an adaptive survival mechanism. Glucose-regulated protein of 78 kD /immunoglobulin heavy chain binding protein (GRP78/BiP) is a key molecular chaperone in the endoplasmic reticulum that, when expressed at the cell surface, acts as a receptor for several signaling pathways enhancing antiapoptotic and proliferative signals. We showed GRP78/BiP translocation to PC3 cell surface in the presence of tunicamycin, an ER stress inductor, and demonstrated the existence of a GRP78/BiP-dependent non-canonical Nrf2 activation, responsible for increased resistance to ER-stress induced apoptosis. We found that, even in the absence of ROS production, tunicamycin causes Nrf2 activation, and activates Akt signaling, events bulnted by anti-GRP78/BiP antibody treatment. The presence of GRP78/BiP at the cell surface might be exploited for the immunotherapeutic strategy of prostate cancer since its blockage by anti-GRP78/BiP antibodies might promote cancer death by suppressing some of the several molecular protective mechanisms found in aggressive cancer cells.

17.
Eur J Transl Myol ; 27(1): 6406, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28458807

RESUMO

Denervation leads to the activation of the catabolic pathways, such as the ubiquitin-proteasome and autophagy, resulting in skeletal muscle atrophy and weakness. Furthermore, denervation induces oxidative stress in skeletal muscle, which is thought to contribute to the induction of skeletal muscle atrophy. Several muscle diseases are characterized by denervation, but the molecular pathways contributing to muscle atrophy have been only partially described. Our study delineates the kinetics of activation of oxidative stress response in skeletal muscle following denervation. Despite the denervation-dependent induction of oxidative stress in skeletal muscle, treatments with anti-oxidant drugs do not prevent the reduction of muscle mass. Our results indicate that, although oxidative stress may contribute to the activation of the response to denervation, it is not responsible by itself of oxidative damage or neurogenic muscle atrophy.

18.
Int J Mol Sci ; 17(8)2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27529240

RESUMO

Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function.


Assuntos
Doenças Neurodegenerativas/metabolismo , Peptídeos Cíclicos/metabolismo , Animais , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Estresse Oxidativo/fisiologia , Peptídeos Cíclicos/química , Transdução de Sinais
19.
Int J Biochem Cell Biol ; 51: 159-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24699213

RESUMO

Many neurological and neurodegenerative diseases are associated with oxidative stress and glial inflammation, all related to endoplasmic reticulum stress. Cyclo(His-Pro) is an endogenous cyclic dipeptide that exerts cytoprotection by interfering with the Nrf2-NF-κB systems, the former presiding the antioxidant and the latter the pro-inflammatory cellular response. Here we investigated whether the cyclic dipeptide inhibits glial inflammation thus reducing the detrimental effect of inflammatory neurotoxins on neurons. We found that systemic administration of cyclo(His-Pro) exerts in vivo anti-inflammatory effects in the central nervous system by down-regulating hepatic and cerebral TNFα expression thereby counteracting LPS-induced gliosis. Mechanistic studies indicated that the cyclic dipeptide-mediated effects are achieved through the activation of Nrf2-driven antioxidant response and the inhibition of the pro-inflammatory NF-κB pathway. Moreover, by up-regulating Bip, cyclo(His-Pro) increases the ER stress sensitivity and triggers the unfolded protein response to alleviate the ER stress. These results unveil a novel potential therapeutic use of cyclo(His-Pro) against neuroinflammatory-related diseases and we might now consider its potential anti-inflammatory role in other neuropathological conditions.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Microglia/efeitos dos fármacos , Síndromes Neurotóxicas/prevenção & controle , Peptídeos Cíclicos/farmacologia , Piperazinas/farmacologia , Animais , Anti-Infecciosos/farmacologia , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
20.
Gene ; 539(1): 1-7, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24530478

RESUMO

α-Tocopheryl succinate is one of the most effective analogues of vitamin E for inhibiting cell proliferation and inducing cell death in a variety of cancerous cell lines while sparing normal cells or tissues. αTocopheryl succinate inhibits oxidative phosphorylation at the level of mitochondrial complexes I and II, thus enhancing reactive oxygen species generation which, in turn, induces the expression of Nrf2-driven antioxidant/detoxifying genes. The cytoprotective role of Nrf2 downstream genes/proteins prompted us to investigate whether and how α-tocopheryl succinate increases resistance of PC3 prostate cancer cells to pro-oxidant damage. A 4h α-tocopheryl succinate pre-treatment increases glutathione intracellular content, indicating that the vitamin E derivative is capable of training the cells to react to an oxidative insult. We found that α-tocopheryl succinate pre-treatment does not enhance paraquat-/hydroquinone-induced cytotoxicity whereas it exhibits an additional/synergistic effect on H2O2₋/docetaxel-induced cytotoxicity. While glutathione and heme oxygenase-1 are not involved in α-tocopheryl succinate-induced adaptive response to paraquat, NAD(P)H: quinone oxidoreductase seems to be responsible, at least in part, for the lack of the additional response. Silencing the gene and/or the inhibition of NAD(P)H: quinone oxidoreductase activity counteracts the α-tocopheryl succinate-induced adaptive response. In conclusion, the adaptive response to α-tocopheryl succinate shows that the activation of Nrf2 can promote the survival of cancer cells in an unfavourable environment.


Assuntos
Benzoquinonas/toxicidade , Resistencia a Medicamentos Antineoplásicos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias da Próstata/metabolismo , alfa-Tocoferol/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos dos fármacos , Docetaxel , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Hidroquinonas/toxicidade , Masculino , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade , Neoplasias da Próstata/tratamento farmacológico , Protoporfirinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Taxoides/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA