Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466127

RESUMO

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Sorogrupo , Febre Aftosa/tratamento farmacológico , Febre Aftosa/prevenção & controle , Endopeptidases/metabolismo , Proteases Virais 3C , Antivirais/farmacologia
2.
mBio ; 15(2): e0287823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126789

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic betacoronaviruses that continue to have a significant impact on public health. Timely development and introduction of vaccines and antivirals against SARS-CoV-2 into the clinic have substantially mitigated the burden of COVID-19. However, a limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections, respectively, calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. In this report, we examined the efficacy of two potent 3CLpro inhibitors, 5d and 11d, in fatal animal models of SARS-CoV-2 and MERS-CoV to demonstrate their broad-spectrum activity against both viral infections. These compounds significantly increased the survival of mice in both models when treatment started 1 day post infection compared to no treatment which led to 100% fatality. Especially, the treatment with compound 11d resulted in 80% and 90% survival in SARS-CoV-2 and MERS-CoV-infected mice, respectively. Amelioration of lung viral load and histopathological changes in treated mice correlated well with improved survival in both infection models. Furthermore, compound 11d exhibited significant antiviral activities in K18-hACE2 mice infected with SARS-CoV-2 Omicron subvariant XBB.1.16. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.IMPORTANCEHuman coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) continue to have a significant impact on public health. A limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. We have previously reported a series of small-molecule 3C-like protease (3CLpro) inhibitors against human coronaviruses. In this report, we demonstrated the in vivo efficacy of 3CLpro inhibitors for their broad-spectrum activity against both SARS-CoV-2 and MERS-CoV infections using the fatal animal models. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.


Assuntos
COVID-19 , Hepatite C Crônica , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Camundongos , Animais , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças
3.
Eur J Med Chem ; 254: 115376, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080108

RESUMO

The high morbidity and mortality associated with SARS-CoV-2 infection, the etiological agent of COVID-19, has had a major impact on global public health. Significant progress has been made in the development of an array of vaccines and biologics, however, the emergence of SARS-CoV-2 variants and breakthrough infections are an ongoing major concern. Furthermore, there is an existing paucity of small-molecule host and virus-directed therapeutics and prophylactics that can be used to counter the spread of SARS-CoV-2, and any emerging and re-emerging coronaviruses. We describe herein our efforts to address this urgent need by focusing on the structure-guided design of potent broad-spectrum inhibitors of SARS-CoV-2 3C-like protease (3CLpro or Main protease), an enzyme essential for viral replication. The inhibitors exploit the directional effects associated with the presence of a gem-dimethyl group that allow the inhibitors to optimally interact with the S4 subsite of the enzyme. Several compounds were found to potently inhibit SARS-CoV-2 and MERS-CoV 3CL proteases in biochemical and cell-based assays. Specifically, the EC50 values of aldehyde 1c and its corresponding bisulfite adduct 1d against SARS-CoV-2 were found to be 12 and 10 nM, respectively, and their CC50 values were >50 µM. Furthermore, deuteration of these compounds yielded compounds 2c/2d with EC50 values 11 and 12 nM, respectively. Replacement of the aldehyde warhead with a nitrile (CN) or an α-ketoamide warhead or its corresponding bisulfite adduct yielded compounds 1g, 1eand1f with EC50 values 60, 50 and 70 nM, respectively. High-resolution cocrystal structures have identified the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and, furthermore, have illuminated the mechanism of action of the inhibitors. Overall, the high Safety Index (SI) (SI=CC50/EC50) displayed by these compounds suggests that they are well-suited to conducting further preclinical studies.


Assuntos
COVID-19 , Hepatite C Crônica , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Cisteína Endopeptidases/metabolismo
4.
ACS Pharmacol Transl Sci ; 6(1): 181-194, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36654747

RESUMO

The advent of SARS-CoV-2, the causative agent of COVID-19, and its worldwide impact on global health, have provided the impetus for the development of effective countermeasures that can be deployed against the virus, including vaccines, monoclonal antibodies, and direct-acting antivirals (DAAs). Despite these efforts, the current paucity of DAAs has created an urgent need for the creation of an enhanced and diversified portfolio of broadly acting agents with different mechanisms of action that can effectively abrogate viral infection. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is a validated target for the discovery of SARS-CoV-2 therapeutics. In this report, we describe the structure-guided utilization of the cyclopropane moiety in the design of highly potent inhibitors of SARS-CoV-2 3CLpro, SARS-CoV-1 3CLpro, and MERS-CoV 3CLpro. High-resolution cocrystal structures were used to identify the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and unravel the mechanism of action. Aldehydes 5c and 11c inhibited SARS-CoV-2 replication with EC50 values of 12 and 11 nM, respectively. Furthermore, the corresponding aldehyde bisulfite adducts 5d and 11d were equipotent with EC50 values of 13 and 12 nM, respectively. The safety index (SI) values for compounds 5c / 11c and 5d / 11d ranged between 7692 and 9090. Importantly, aldehydes 5c / 11c and bisulfite adducts 5d / 11d potently inhibited MERS-CoV 3CLpro with IC50 values of 80 and 120 nM, and 70 and 70 nM, respectively. Likewise, compounds 5c / 11c and 5d / 11d inhibited SARS-CoV-1 with IC50 values of 960 and 350 nM and 790 and 240 nM, respectively. Taken together, these studies suggest that the inhibitors described herein have low cytotoxicity and high potency and are promising candidates for further development as broad-spectrum direct-acting antivirals against highly pathogenic coronaviruses.

5.
Microbiol Spectr ; 10(4): e0014222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35766511

RESUMO

Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are highly contagious diseases caused by lagoviruses in the Caliciviridae family. These infectious diseases are associated with high mortality and a serious threat to domesticated and wild rabbits and hares, including endangered species such as riparian brush rabbits (Sylvilagus bachmani riparius). In the United States (U.S.), only isolated cases of RHD had been reported until Spring 2020. However, RHD caused by GI.2/rabbit hemorrhagic disease virus (RHDV)2/b was unexpectedly reported in April 2020 in New Mexico and has subsequently spread to several U.S. states, infecting wild rabbits and hares and making it highly likely that RHD will become endemic in the U.S. Vaccines are available for RHD; however, there is no specific treatment for this disease. Lagoviruses encode a 3C-like protease (3CLpro), which is essential for virus replication and a promising target for antiviral drug development. We have previously generated focused small-molecule libraries of 3CLpro inhibitors and demonstrated the in vitro potency and in vivo efficacy of some protease inhibitors against viruses encoding 3CLpro, including caliciviruses and coronaviruses. Here, we report the development of the enzyme and cell-based assays for the 3CLpro of GI.1c/RHDV, recombinant GI.3P-GI.2 (RHDV2/b), and GII.1/European brown hare syndrome virus (EBHSV) as well as the identification of potent lagovirus 3CLpro inhibitors, including GC376, a protease inhibitor being developed for feline infectious peritonitis. In addition, structure-activity relationship study and homology modeling of the 3CLpro and inhibitors revealed that lagovirus 3CLpro share similar structural requirements for inhibition with other calicivirus 3CLpro. IMPORTANCE Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are viral diseases that affect lagomorphs with significant economic and ecological impacts. RHD vaccines are available, but specific antiviral treatment for these viral infections would be a valuable addition to the current control measures. Lagoviruses encode 3C-like protease (3CLpro), which is essential for virus replication and an attractive target for antiviral drug discovery. We have screened and identified potent small-molecule inhibitors that block lagovirus 3CLpro in the enzyme- and cell-based assays. Our results suggest that these compounds have the potential for further development as antiviral drugs for lagoviruses.


Assuntos
Infecções por Caliciviridae , Lebres , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Gatos , Vírus da Doença Hemorrágica de Coelhos/fisiologia , Peptídeo Hidrolases , Filogenia , Inibidores de Proteases , Coelhos
6.
J Med Chem ; 65(11): 7818-7832, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35638577

RESUMO

The worldwide impact of the ongoing COVID-19 pandemic on public health has made imperative the discovery and development of direct-acting antivirals aimed at targeting viral and/or host targets. SARS-CoV-2 3C-like protease (3CLpro) has emerged as a validated target for the discovery of SARS-CoV-2 therapeutics because of the pivotal role it plays in viral replication. We describe herein the structure-guided design of highly potent inhibitors of SARS-CoV-2 3CLpro that incorporate in their structure novel spirocyclic design elements aimed at optimizing potency by accessing new chemical space. Inhibitors of both SARS-CoV-2 3CLpro and MERS-CoV 3CLpro that exhibit nM potency and high safety indices have been identified. The mechanism of action of the inhibitors and the structural determinants associated with binding were established using high-resolution cocrystal structures.


Assuntos
COVID-19 , Hepatite C Crônica , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Pandemias , Peptídeo Hidrolases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
7.
J Med Chem ; 64(24): 17846-17865, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34865476

RESUMO

The COVID-19 pandemic is having a major impact on public health worldwide, and there is an urgent need for the creation of an armamentarium of effective therapeutics, including vaccines, biologics, and small-molecule therapeutics, to combat SARS-CoV-2 and emerging variants. Inspection of the virus life cycle reveals multiple viral- and host-based choke points that can be exploited to combat the virus. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is an attractive target for therapeutic intervention, and the design of inhibitors of the protease may lead to the emergence of effective SARS-CoV-2-specific antivirals. We describe herein the results of our studies related to the application of X-ray crystallography, the Thorpe-Ingold effect, deuteration, and stereochemistry in the design of highly potent and nontoxic inhibitors of SARS-CoV-2 3CLpro.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/metabolismo , Chlorocebus aethiops , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Desenho de Fármacos , Células HEK293 , Humanos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , SARS-CoV-2/enzimologia , Estereoisomerismo , Células Vero
8.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34210738

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/uso terapêutico , Pirrolidinas/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , COVID-19/patologia , Proteases 3C de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/química , Cristalografia por Raios X , Deutério , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Pirrolidinas/química , SARS-CoV-2/enzimologia , Ácidos Sulfônicos , Transgenes
9.
J Med Chem ; 64(14): 10047-10058, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34213885

RESUMO

A series of nondeuterated and deuterated dipeptidyl aldehyde and masked aldehyde inhibitors that incorporate in their structure a conformationally constrained cyclohexane moiety was synthesized and found to potently inhibit severe acute respiratory syndrome coronavirus-2 3CL protease in biochemical and cell-based assays. Several of the inhibitors were also found to be nanomolar inhibitors of Middle East respiratory syndrome coronavirus 3CL protease. The corresponding latent aldehyde bisulfite adducts were found to be equipotent to the precursor aldehydes. High-resolution cocrystal structures confirmed the mechanism of action and illuminated the structural determinants involved in binding. The spatial disposition of the compounds disclosed herein provides an effective means of accessing new chemical space and optimizing pharmacological activity. The cellular permeability of the identified inhibitors and lack of cytotoxicity warrant their advancement as potential therapeutics for COVID-19.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Cicloexanos/farmacologia , Desenho de Fármacos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Proteases 3C de Coronavírus/metabolismo , Cicloexanos/síntese química , Cicloexanos/química , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Tratamento Farmacológico da COVID-19
10.
J Med Chem ; 63(20): 11945-11963, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32945669

RESUMO

Acute gastroenteritis caused by noroviruses has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The disease impacts most severely immunocompromised patients, the elderly, and children. The current lack of approved vaccines and small-molecule therapeutics for the treatment and prophylaxis of norovirus infections underscores the need for the development of norovirus-specific drugs. The studies described herein entail the use of the gem-dimethyl moiety as a means of improving the pharmacological activity and physicochemical properties of a dipeptidyl series of transition state inhibitors of norovirus 3CL protease, an enzyme essential for viral replication. Several compounds were found to be potent inhibitors of the enzyme in biochemical and cell-based assays. The pharmacological activity and cellular permeability of the inhibitors were found to be sensitive to the location of the gem-dimethyl group.


Assuntos
Antivirais/farmacologia , Dipeptídeos/farmacologia , Norovirus/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Antivirais/síntese química , Antivirais/química , Dipeptídeos/síntese química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Norovirus/enzimologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade
11.
Sci Transl Med ; 12(557)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32747425

RESUMO

Pathogenic coronaviruses are a major threat to global public health, as exemplified by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the newly emerged SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). We describe herein the structure-guided optimization of a series of inhibitors of the coronavirus 3C-like protease (3CLpro), an enzyme essential for viral replication. The optimized compounds were effective against several human coronaviruses including MERS-CoV, SARS-CoV, and SARS-CoV-2 in an enzyme assay and in cell-based assays using Huh-7 and Vero E6 cell lines. Two selected compounds showed antiviral effects against SARS-CoV-2 in cultured primary human airway epithelial cells. In a mouse model of MERS-CoV infection, administration of a lead compound 1 day after virus infection increased survival from 0 to 100% and reduced lung viral titers and lung histopathology. These results suggest that this series of compounds has the potential to be developed further as antiviral drugs against human coronaviruses.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Proteases 3C de Coronavírus , Infecções por Coronavirus/patologia , Cristalografia por Raios X , Cisteína Endopeptidases/química , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Transgênicos , Testes de Sensibilidade Microbiana , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Modelos Moleculares , Pandemias , Inibidores de Proteases/química , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas , Especificidade da Espécie , Eletricidade Estática , Pesquisa Translacional Biomédica , Células Vero , Carga Viral/efeitos dos fármacos , Proteínas não Estruturais Virais/química , Tratamento Farmacológico da COVID-19
12.
Vet Microbiol ; 237: 108398, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31585653

RESUMO

Feline infectious peritonitis (FIP) is a highly fatal disease caused by a virulent feline coronavirus in domestic and wild cats. We have previously reported the synthesis of potent coronavirus 3C-like protease (3CLpro) inhibitors and the efficacy of a protease inhibitor, GC376, in client-owned cats with FIP. In this study, we studied the effect of the amino acid changes in 3CLpro of feline coronavirus from a feline patient who received antiviral treatment for prolonged duration. We generated recombinant 3CLpro containing the identified amino acid changes (N25S, A252S or K260 N) and determined their susceptibility to protease inhibitors in the fluorescence resonance energy transfer assay. The assay showed that N25S in 3CLpro confers a small change (up to 1.68-fold increase in the 50% inhibitory concentration) in susceptibility to GC376, but other amino acid changes do not affect susceptibility. Modelling of 3CLpro carrying the amino acid changes was conducted to probe the structural basis for these findings. The results of this study may explain the observed absence of clinical resistance to the long-term antiviral treatment in the patients.


Assuntos
Doenças do Gato/virologia , Infecções por Coronaviridae/veterinária , Coronavirus Felino/enzimologia , Peritonite Infecciosa Felina/complicações , Inibidores de Proteases/uso terapêutico , Pirrolidinas/uso terapêutico , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Gatos , Infecções por Coronaviridae/tratamento farmacológico , Infecções por Coronaviridae/virologia , Masculino , Modelos Moleculares , Inibidores de Proteases/farmacologia , Conformação Proteica , Pirrolidinas/farmacologia , RNA Viral , Alinhamento de Sequência , Ácidos Sulfônicos , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Proteins ; 87(7): 579-587, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883881

RESUMO

Human noroviruses are the primary cause of outbreaks of acute gastroenteritis worldwide. The problem is further compounded by the current lack of norovirus-specific antivirals or vaccines. Noroviruses have a single-stranded, positive sense 7 to 8 kb RNA genome which encodes a polyprotein precursor that is processed by a virus-encoded 3C-like cysteine protease (NV 3CLpro) to generate at least six mature nonstructural proteins. Processing of the polyprotein is essential for virus replication, consequently, NV 3CLpro has emerged as an attractive target for the discovery of norovirus therapeutics and prophylactics. We have recently described the structure-based design of macrocyclic transition state inhibitors of NV 3CLpro. In order to gain insight and understanding into the interaction of macrocyclic inhibitors with the enzyme, as well as probe the effect of ring size on pharmacological activity and cellular permeability, additional macrocyclic inhibitors were synthesized and high resolution cocrystal structures determined. The results of our studies tentatively suggest that the macrocyclic scaffold may hamper optimal binding to the active site by impeding concerted cross-talk between the S2 and S4 subsites.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Compostos Macrocíclicos/farmacologia , Norovirus/enzimologia , Animais , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Gastroenterite/tratamento farmacológico , Gastroenterite/virologia , Humanos , Compostos Macrocíclicos/química , Camundongos , Modelos Moleculares , Norovirus/química , Norovirus/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Células RAW 264.7
14.
Viruses ; 11(2)2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823509

RESUMO

Proteases are a major enzyme group playing important roles in a wide variety of biological processes in life forms ranging from viruses to mammalians. The aberrant activity of proteases can lead to various diseases; consequently, host proteases have been the focus of intense investigation as potential therapeutic targets. A wide range of viruses encode proteases which play an essential role in viral replication and, therefore, constitute attractive targets for the development of antiviral therapeutics. There are numerous examples of successful drug development targeting cellular and viral proteases, including antivirals against human immunodeficiency virus and hepatitis C virus. Most FDA-approved antiviral agents are peptidomimetics and macrocyclic compounds that interact with the active site of a targeted protease. Norovirus proteases are cysteine proteases that contain a chymotrypsin-like fold in their 3D structures. This review focuses on our group's efforts related to the development of norovirus protease inhibitors as potential anti-norovirus therapeutics. These protease inhibitors are rationally designed transition-state inhibitors encompassing dipeptidyl, tripeptidyl and macrocyclic compounds. Highly effective inhibitors validated in X-ray co-crystallization, enzyme and cell-based assays, as well as an animal model, were generated by launching an optimization campaign utilizing the initial hit compounds. A prodrug approach was also explored to improve the pharmacokinetics (PK) of the identified inhibitors.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Norovirus/enzimologia , Replicação Viral/efeitos dos fármacos , Antivirais/química , Infecções por Caliciviridae/tratamento farmacológico , Modelos Moleculares , Peptídeo Hidrolases/metabolismo , Peptidomiméticos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Proteínas Virais
15.
Eur J Med Chem ; 150: 334-346, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29544147

RESUMO

There are currently no approved vaccines or small molecule therapeutics available for the prophylaxis or treatment of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections. MERS-CoV 3CL protease is essential for viral replication; consequently, it is an attractive target that provides a potentially effective means of developing small molecule therapeutics for combatting MERS-CoV. We describe herein the structure-guided design and evaluation of a novel class of inhibitors of MERS-CoV 3CL protease that embody a piperidine moiety as a design element that is well-suited to exploiting favorable subsite binding interactions to attain optimal pharmacological activity and PK properties. The mechanism of action of the compounds and the structural determinants associated with binding were illuminated using X-ray crystallography.


Assuntos
Antivirais/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Desenho de Fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Animais , Antivirais/síntese química , Antivirais/química , Gatos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Modelos Moleculares , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade , Células Vero , Proteínas Virais/metabolismo
16.
J Feline Med Surg ; 20(4): 378-392, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28901812

RESUMO

Objectives The safety and efficacy of the 3C-like protease inhibitor GC376 was tested on a cohort of client-owned cats with various forms of feline infectious peritonitis (FIP). Methods Twenty cats from 3.3-82 months of age (mean 10.4 months) with various forms of FIP were accepted into a field trial. Fourteen cats presented with wet or dry-to-wet FIP and six cats presented with dry FIP. GC376 was administered subcutaneously every 12 h at a dose of 15 mg/kg. Cats with neurologic signs were excluded from the study. Results Nineteen of 20 cats treated with GC376 regained outward health within 2 weeks of initial treatment. However, disease signs recurred 1-7 weeks after primary treatment and relapses and new cases were ultimately treated for a minimum of 12 weeks. Relapses no longer responsive to treatment occurred in 13 of these 19 cats within 1-7 weeks of initial or repeat treatment(s). Severe neurologic disease occurred in 8/13 cats that failed treatment and five cats had recurrences of abdominal lesions. At the time of writing, seven cats were in disease remission. Five kittens aged 3.3-4.4 months with wet FIP were treated for 12 weeks and have been in disease remission after stopping treatment and at the time of writing for 5-14 months (mean 11.2 months). A sixth kitten was in remission for 10 weeks after 12 weeks of treatment, relapsed and is responding to a second round of GC376. The seventh was a 6.8-year-old cat with only mesenteric lymph node involvement that went into remission after three relapses that required progressively longer repeat treatments over a 10 month period. Side effects of treatment included transient stinging upon injection and occasional foci of subcutaneous fibrosis and hair loss. There was retarded development and abnormal eruption of permanent teeth in cats treated before 16-18 weeks of age. Conclusions and relevance GC376 showed promise in treating cats with certain presentations of FIP and has opened the door to targeted antiviral drug therapy.


Assuntos
Antivirais/administração & dosagem , Coronavirus Felino/efeitos dos fármacos , Peritonite Infecciosa Felina/tratamento farmacológico , Inibidores de Proteases/administração & dosagem , Animais , Gatos , Peritonite Infecciosa Felina/diagnóstico , Feminino , Replicação Viral/efeitos dos fármacos
17.
Eur J Med Chem ; 143: 881-890, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227928

RESUMO

Acute nonbacterial gastroenteritis caused by noroviruses constitutes a global public health concern and a significant economic burden. There are currently no small molecule therapeutics or vaccines for the treatment of norovirus infections. A structure-guided approach was utilized in the design of a series of inhibitors of norovirus 3CL protease that embody an oxazolidinone ring as a novel design element for attaining optimal binding interactions. Low micromolar cell-permeable inhibitors that display anti-norovirus activity have been identified. The mechanism of action, mode of binding, and structural rearrangements associated with the interaction of the inhibitors and the enzyme were elucidated using X-ray crystallography.


Assuntos
Norovirus/enzimologia , Oxazolidinonas/farmacologia , Inibidores de Proteases/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Oxazolidinonas/síntese química , Oxazolidinonas/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
18.
J Med Chem ; 60(14): 6239-6248, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28671827

RESUMO

Ester and carbamate prodrugs of aldehyde bisulfite adduct inhibitors were synthesized in order to improve their pharmacokinetic and pharmacodynamic properties. The inhibitory activity of the compounds against norovirus 3C-like protease in enzyme and cell-based assays was determined. The ester and carbamate prodrugs displayed equivalent potency to those of the precursor aldehyde bisulfite adducts and precursor aldehydes. Furthermore, the rate of ester cleavage was found to be dependent on alkyl chain length. The generated prodrugs exhibited low cytotoxicity and satisfactory liver microsomes stability and plasma protein binding. The methodology described herein has wide applicability and can be extended to the bisulfite adducts of common warheads employed in the design of transition state inhibitors of serine and cysteine proteases of medical relevance.


Assuntos
Antivirais/química , Compostos Aza/química , Carbamatos/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Norovirus/efeitos dos fármacos , Pró-Fármacos/química , Pirrolidinas/química , Proteínas Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/farmacologia , Compostos Aza/síntese química , Compostos Aza/farmacologia , Proteínas Sanguíneas/metabolismo , Carbamatos/síntese química , Carbamatos/farmacologia , Linhagem Celular , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Ésteres/síntese química , Ésteres/química , Ésteres/farmacologia , Humanos , Hidrólise , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Ligação Proteica , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
19.
Eur J Med Chem ; 127: 41-61, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28038326

RESUMO

Norovirus infections have a major impact on public health worldwide, yet there is a current dearth of norovirus-specific therapeutics and prophylactics. This report describes the discovery of a novel class of macrocyclic inhibitors of norovirus 3C-like protease, a cysteine protease that is essential for virus replication. SAR, structural, and biochemical studies were carried out to ascertain the effect of structure on pharmacological activity and permeability. Insights gained from these studies have laid a solid foundation for capitalizing on the therapeutic potential of the series of inhibitors described herein.


Assuntos
Desenho de Fármacos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Norovirus/enzimologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Animais , Técnicas de Química Sintética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Norovirus/efeitos dos fármacos , Permeabilidade , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Conformação Proteica , Células RAW 264.7 , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/metabolismo
20.
Eur J Med Chem ; 126: 502-516, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27914364

RESUMO

Human noroviruses are the primary cause of epidemic and sporadic acute gastroenteritis. The worldwide high morbidity and mortality associated with norovirus infections, particularly among the elderly, immunocompromised patients and children, constitute a serious public health concern. There are currently no approved human vaccines or norovirus-specific small-molecule therapeutics or prophylactics. Norovirus 3CL protease has recently emerged as a potential therapeutic target for the development of anti-norovirus agents. We hypothesized that the S4 subsite of the enzyme may provide an effective means of designing potent and cell permeable inhibitors of the enzyme. We report herein the structure-guided exploration and exploitation of the S4 subsite of norovirus 3CL protease in the design and synthesis of effective inhibitors of the protease.


Assuntos
Desenho de Fármacos , Norovirus/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Linhagem Celular , Humanos , Modelos Moleculares , Norovirus/efeitos dos fármacos , Norovirus/fisiologia , Permeabilidade , Inibidores de Proteases/metabolismo , Inibidores de Proteases/toxicidade , Conformação Proteica , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA