Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(49)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34534978

RESUMO

We report electron spin resonance of the itinerant ferromagnets LaCrGe3, CeCrGe3, and PrCrGe3. These compounds show well defined and very similar spectra of itinerant Cr 3dspins in the paramagnetic temperature region. Upon cooling and crossing the Cr-ferromagnetic ordering (below around 90 K) strong spectral structures start to dominate the resonance spectra in a quite different manner in the three compounds. In the Ce- and Pr-compounds the resonance is only visible in the paramagnetic region whereas in the La-compound the resonance can be followed far below the ferromagnetic ordering temperature. This behavior will be discussed in terms of the specific interplay between the 4fand 3dmagnetism which appears quite remarkable since CeCrGe3displays heavy fermion behavior even in the magnetically ordered state.

2.
Nat Commun ; 6: 8680, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493166

RESUMO

Adiabatic demagnetization is currently gaining strong interest in searching for alternatives to (3)He-based refrigeration techniques for achieving temperatures below 2 K. The main reasons for that are the recent shortage and high price of the rare helium isotope (3)He. Here we report the discovery of a large magnetocaloric effect in the intermetallic compound YbPt2Sn, which allows adiabatic demagnetization cooling from 2 K down to 0.2 K. We demonstrate this with a home-made refrigerator. Other materials, for example, paramagnetic salts, are commonly used for the same purpose but none of them is metallic, a severe limitation for low-temperature applications. YbPt2Sn is a good metal with an extremely rare weak magnetic coupling between the Yb atoms, which prevents them from ordering above 0.25 K, leaving enough entropy free for use in adiabatic demagnetization cooling. The large volumetric entropy capacity of YbPt2Sn guarantees also a good cooling power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA