Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(23): 41590-41612, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366633

RESUMO

Optical water classification based on remote sensing reflectance (Rrs(λ)) data can provide insight into water components driving optical variability and inform the development and application of bio-optical algorithms in complex aquatic systems. In this study, we use an in situ dataset consisting of hyperspectral Rrs(λ) and other biogeochemical and optical parameters collected over nearly five years across a heavily urbanized estuary, the Long Island Sound (LIS), east of New York City, USA, to optically classify LIS waters based on Rrs(λ) spectral shape. We investigate the similarities and differences of discrete groupings (k-means clustering) and continuous spectral indexing using the Apparent Visible Wavelength (AVW) in relation to system biogeochemistry and water properties. Our Rrs(λ) dataset in LIS was best described by three spectral clusters, the first two accounting for the majority (89%) of Rrs(λ) observations and primarily driven by phytoplankton dynamics, with the third confined to measurements in river and river plume waters. We found AVW effective at tracking subtle changes in Rrs(λ) spectral shape and fine-scale water quality features along river-to-ocean gradients. The recently developed Quality Water Index Polynomial (QWIP) was applied to evaluate three different atmospheric correction approaches for satellite-derived Rrs(λ) from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensor in LIS, finding Polymer to be the preferred approach. Our results suggest that integrative, continuous indices such as AVW can be effective indicators to assess nearshore biogeochemical variability and evaluate the quality of both in situ and satellite bio-optical datasets, as needed for improved ecosystem and water resource management in LIS and similar regions.


Assuntos
Ecossistema , Estuários , Monitoramento Ambiental/métodos , Imageamento Hiperespectral , Rios/química
2.
Sci Rep ; 11(1): 10236, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986333

RESUMO

The Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA