Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Transplant Cell Ther ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762057

RESUMO

Genetically modified cell therapies (GMCT), particularly immune effector cells (IEC) such as chimeric receptor antigen (CAR) T cells, have shown promise in curing cancer and rare diseases after a single treatment course. Following close behind CAR T approvals are GMCT based on hematopoietic stem cells, such as products developed for hemoglobinopathies and other disorders. Academically sponsored GMCT products, often developed in academic centers without industry involvement, face challenges in sustaining access after completion of early phase studies when there is no commercial partner invested in completing registration trials for marketing applications. The American Society for Transplantation and Cellular Therapy (ASTCT) formed a task force named ACT To Sustain (Adoptive Cell Therapy to Sustain) to address the "valley of death" of academic GMCT products. This paper presents the task force's findings and considerations regarding financial sustainability of academically sponsored GMCT products in the absence of commercial development. We outline case scenarios illustrating barriers to maintaining access to promising GMCT developed by academic centers. The paper also delves into the current state of GMCT development, commercialization, and reimbursement, citing examples of abandoned products, cost estimates associated with GMCT manufacturing and real-world use of cost recovery. We propose potential solutions to address the financial, regulatory, and logistical challenges associated with sustaining access to academically sponsored GMCT products and to ensure that products with promising results do not languish in a "valley of death" due to financial or implementational barriers. The suggestions include aligning US Food and Drug Administration (FDA) designations with benefit coverage, allowing for cost recovery of certain products as a covered benefit, and engaging with regulators and policy makers to discuss alternative pathways for academic centers to provide access. We stress the importance of sustainable access to GMCT and call for collaborative efforts to develop regulatory pathways that support access to academically sponsored GMCT products.

2.
Blood Adv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640197

RESUMO

The significance of biomarkers at second-line treatment for acute graft-versus-host disease (GVHD) is not well characterized. We analyzed clinical data and serum samples at initiation of second-line systemic treatment of acute GVHD from 167 patients from 17 centers of the Mount Sinai Acute GVHD International Consortium (MAGIC) between 2016 and 2021. Sixty-two patients received ruxolitinib-based therapy while 102 received other systemic agents. In agreement with prospective trials, ruxolitinib resulted in higher day 28 (D28) ORR compared to non-ruxolitinib therapies (55% vs 31%, P=0.003) and patients who received ruxolitinib had significantly lower non-relapse mortality (NRM) than those who received non-ruxolitinib therapies (point estimates at 2-year: 35% vs 61%, p=0.002). Biomarker analyses demonstrated that the benefit from ruxolitinib was observed only in patients with low MAGIC algorithm probabilities (MAPs) at the start of second-line treatment. Among patients with a low MAP, those who received ruxolitinib experienced significantly lower NRM than those who received non-ruxolitinib therapies (point estimates at 2-year: 12% vs 41%, p=0.016). However, patients with a high MAP experienced high NRM regardless of treatment with ruxolitinib or non-ruxolitinib therapies (point estimates at 2-year: 67% vs 80%, p=0.65). A landmark analysis demonstrated that the relationship between D28 response and NRM largely depends on the MAP level at initiation of second-line therapy. In conclusion, the MAP measured at second-line systemic treatment for acute GVHD predicts treatment response and NRM. Outcomes of patients with high MAP are poor, regardless of treatment choice, and ruxolitinib appears to primarily benefit patients with low MAP.

4.
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38661449

RESUMO

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A. METHODS: We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed. RESULTS: A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred. CONCLUSIONS: Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Transplante de Células-Tronco Hematopoéticas , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/terapia , Antígenos CD34 , Bussulfano/uso terapêutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Edição de Genes , Células-Tronco Hematopoéticas , Proteínas Repressoras , Condicionamento Pré-Transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Agonistas Mieloablativos/uso terapêutico , Europa (Continente) , América do Norte
5.
Transplant Cell Ther ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38588880

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable efficacy in relapsed/refractory (r/r) B cell malignancies, including in pediatric patients with acute lymphoblastic leukemia (ALL). Expanding this success to other hematologic and solid malignancies is an area of active research and, although challenges remain, novel solutions have led to significant progress over the past decade. Ongoing clinical trials for CAR T cell therapy for T cell malignancies and acute myeloid leukemia (AML) have highlighted challenges, including antigen specificity with off-tumor toxicity and persistence concerns. In T cell malignancies, notable challenges include CAR T cell fratricide and prolonged T cell aplasia, which are being addressed with strategies such as gene editing and suicide switch technologies. In AML, antigen identification remains a significant barrier, due to shared antigens across healthy hematopoietic progenitor cells and myeloid blasts. Strategies to limit persistence and circumvent the immunosuppressive tumor microenvironment (TME) created by AML are also being explored. CAR T cell therapies for central nervous system and solid tumors have several challenges, including tumor antigen heterogeneity, immunosuppressive and hypoxic TME, and potential for off-target toxicity. Numerous CAR T cell products have been designed to overcome these challenges, including "armored" CARs and CAR/T cell receptor (TCR) hybrids. Strategies to enhance CAR T cell delivery, augment CAR T cell performance in the TME, and ensure the safety of these products have shown promising results. In this manuscript, we will review the available evidence for CAR T cell use in T cell malignancies, AML, central nervous system (CNS), and non-CNS solid tumor malignancies, and recommend areas for future research.

6.
Nature ; 629(8010): 211-218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600391

RESUMO

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.


Assuntos
Proteína Forkhead Box O1 , Memória Imunológica , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Proteína Forkhead Box O1/metabolismo , Edição de Genes , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia
7.
Transplant Cell Ther ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38548227

RESUMO

Acute graft versus host disease (GVHD) is a common and serious complication of allogeneic hematopoietic cell transplantation (HCT) in children but overall clinical grade at onset only modestly predicts response to treatment and survival outcomes. Two tools to assess risk at initiation of treatment were recently developed. The Minnesota risk system stratifies children for risk of nonrelapse mortality (NRM) according to the pattern of GVHD target organ severity. The Mount Sinai Acute GVHD International Consortium (MAGIC) algorithm of 2 serum biomarkers (ST2 and REG3α) predicts NRM in adult patients but has not been validated in a pediatric population. We aimed to develop and validate a system that stratifies children at the onset of GVHD for risk of 6-month NRM. We determined the MAGIC algorithm probabilities (MAPs) and Minnesota risk for a multicenter cohort of 315 pediatric patients who developed GVHD requiring treatment with systemic corticosteroids. MAPs created 3 risk groups with distinct outcomes at the start of treatment and were more accurate than Minnesota risk stratification for prediction of NRM (area under the receiver operating curve (AUC), .79 versus .62, P = .001). A novel model that combined Minnesota risk and biomarker scores created from a training cohort was more accurate than either biomarkers or clinical systems in a validation cohort (AUC .87) and stratified patients into 2 groups with highly different 6-month NRM (5% versus 38%, P < .001). In summary, we validated the MAP as a prognostic biomarker in pediatric patients with GVHD, and a novel risk stratification that combines Minnesota risk and biomarker risk performed best. Biomarker-based risk stratification can be used in clinical trials to develop more tailored approaches for children who require treatment for GVHD.

8.
Leukemia ; 38(5): 969-980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519798

RESUMO

The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eµ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eµ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eµ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.


Assuntos
Modelos Animais de Doenças , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Aneuploidia , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Centrossomo/patologia , Diploide
9.
Transplant Cell Ther ; 30(4): 421-432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320730

RESUMO

The overall response rate (ORR) 28 days after treatment has been adopted as the primary endpoint for clinical trials of acute graft versus host disease (GVHD). However, physicians often need to modify immunosuppression earlier than day (D) 28, and non-relapse mortality (NRM) does not always correlate with ORR at D28. We studied 1144 patients that received systemic treatment for GVHD in the Mount Sinai Acute GVHD International Consortium (MAGIC) and divided them into a training set (n=764) and a validation set (n=380). We used a recursive partitioning algorithm to create a Mount Sinai model that classifies patients into favorable or unfavorable groups that predicted 12 month NRM according to overall GVHD grade at both onset and D14. In the Mount Sinai model grade II GVHD at D14 was unfavorable for grade III/IV GVHD at onset and predicted NRM as well as the D28 standard response model. The MAGIC algorithm probability (MAP) is a validated score that combines the serum concentrations of suppression of tumorigenicity 2 (ST2) and regenerating islet-derived 3-alpha (REG3α) to predict NRM. Inclusion of the D14 MAP biomarker score with the D14 Mount Sinai model created three distinct groups (good, intermediate, poor) with strikingly different NRM (8%, 35%, 76% respectively). This D14 MAGIC model displayed better AUC, sensitivity, positive and negative predictive value, and net benefit in decision curve analysis compared to the D28 standard response model. We conclude that this D14 MAGIC model could be useful in therapeutic decisions and may offer an improved endpoint for clinical trials of acute GVHD treatment.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Biomarcadores , Doença Enxerto-Hospedeiro/tratamento farmacológico , Terapia de Imunossupressão , Transplante Homólogo
10.
Blood Adv ; 8(8): 2047-2057, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38324721

RESUMO

ABSTRACT: The absence of a standardized definition for graft-versus-host disease (GVHD) flares and data on its clinical course are significant concerns. We retrospectively evaluated 968 patients across 23 Mount Sinai Acute GVHD International Consortium (MAGIC) transplant centers who achieved complete response (CR) or very good partial response (VGPR) within 4 weeks of treatment. The cumulative incidence of flares within 6 months was 22%, and flares were associated with a higher risk of nonrelapse mortality (NRM; adjusted hazard ratio [aHR], 4.84; 95% confidence interval [CI], 3.19-7.36; P < .001). Flares were more severe (grades 3/4, 41% vs 16%; P < .001) and had more frequent lower gastrointestinal (LGI) involvement (55% vs 32%; P < .001) than the initial GVHD. At CR/VGPR, elevated MAGIC biomarkers predicted the future occurrence of a flare, along with its severity and LGI involvement. In multivariate analyses, higher Ann Arbor (AA) biomarker scores at CR/VGPR were significant risk factors for flares (AA2 vs AA1: aHR, 1.81 [95% CI, 1.32-2.48; P = .001]; AA3 vs AA1: aHR, 3.14 [95% CI, 1.98-4.98; P < .001]), as were early response to initial treatment (aHR, 1.84; 95% CI, 1.21-2.80; P = .004) and HLA-mismatched unrelated donor (aHR, 1.74; 95% CI, 1.00-3.02; P = .049). MAGIC biomarkers also stratified the risk of NRM both at CR/VGPR and at the time of flare. We conclude that GVHD flares are common and carry a significant mortality risk. The occurrence of future flares can be predicted by serum biomarkers that may serve to guide adjustment and discontinuation of immunosuppression.


Assuntos
Doença Enxerto-Hospedeiro , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/diagnóstico , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Doença Aguda , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Adolescente , Idoso , Biomarcadores/sangue , Adulto Jovem , Fatores de Risco
11.
Blood Adv ; 8(9): 2182-2192, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38386999

RESUMO

ABSTRACT: Relapse after CD19-directed chimeric antigen receptor (CAR)-modified T cells remains a substantial challenge. Short CAR T-cell persistence contributes to relapse risk, necessitating novel approaches to prolong durability. CAR T-cell reinfusion (CARTr) represents a potential strategy to reduce the risk of or treat relapsed disease after initial CAR T-cell infusion (CARTi). We conducted a retrospective review of reinfusion of murine (CTL019) or humanized (huCART19) anti-CD19/4-1BB CAR T cells across 3 clinical trials or commercial tisagenlecleucel for relapse prevention (peripheral B-cell recovery [BCR] or marrow hematogones ≤6 months after CARTi), minimal residual disease (MRD) or relapse, or nonresponse to CARTi. The primary endpoint was complete response (CR) at day 28 after CARTr, defined as complete remission with B-cell aplasia. Of 262 primary treatments, 81 were followed by ≥1 reinfusion (investigational CTL019, n = 44; huCART19, n = 26; tisagenlecleucel, n = 11), representing 79 patients. Of 63 reinfusions for relapse prevention, 52% achieved CR (BCR, 15/40 [38%]; hematogones, 18/23 [78%]). Lymphodepletion was associated with response to CARTr for BCR (odds ratio [OR], 33.57; P = .015) but not hematogones (OR, 0.30; P = .291). The cumulative incidence of relapse was 29% at 24 months for CR vs 61% for nonresponse to CARTr (P = .259). For MRD/relapse, CR rate to CARTr was 50% (5/10), but 0/8 for nonresponse to CARTi. Toxicity was generally mild, with the only grade ≥3 cytokine release syndrome (n = 6) or neurotoxicity (n = 1) observed in MRD/relapse treatment. Reinfusion of CTL019/tisagenlecleucel or huCART19 is safe, may reduce relapse risk in a subset of patients, and can reinduce remission in CD19+ relapse.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Antígenos CD19/imunologia , Antígenos CD19/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Pré-Escolar , Feminino , Masculino , Receptores de Antígenos Quiméricos/uso terapêutico , Adolescente , Recidiva , Estudos Retrospectivos , Lactente , Receptores de Antígenos de Linfócitos T/uso terapêutico , Resultado do Tratamento , Linfócitos T/imunologia
13.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986944

RESUMO

Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3-7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.

15.
Am J Hematol ; 98(12): 1888-1897, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37718626

RESUMO

CD19 directed CAR T-cell therapy is used to treat relapsed/refractory B-cell acute lymphoblastic leukemia. The role of the pre-CAR bone marrow (BM) stromal microenvironment in determining response to CAR T-cell therapy has been understudied. We performed whole transcriptome analysis, reticulin fibrosis assessment and CD3 T-cell infiltration on BM core biopsies from pre- and post-CAR timepoints for 61 patients, as well as on a cohort of 54 primary B-ALL samples. Pathways of fibrosis, extracellular matrix development, and associated transcription factors AP1 and TGF-ß3, were enriched and upregulated in nonresponders (NR) even prior to CAR T cell therapy. NR showed significantly higher levels of BM fibrosis compared to complete responders by both clinical reticulin assessment and AI-assisted digital image scoring. CD3+ T cells showed a trend toward lower infiltration in NR. NR had significantly higher levels of pre-CAR fibrosis compared to primary B-ALL. High levels of fibrosis were associated with lower overall survival after CAR T-cell therapy. In conclusion, BM fibrosis is a novel mechanism mediating nonresponse to CD19-directed CAR T-cell therapy in B-ALL. A widely used clinically assay for quantitating myelofibrosis can be repurposed to determine patients at high risk of non-response. Genes and pathways associated with BM fibrosis are a potential target to improve response.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Mielofibrose Primária , Humanos , Imunoterapia Adotiva/métodos , Mielofibrose Primária/genética , Mielofibrose Primária/terapia , Reticulina , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Antígenos CD19 , Fibrose , Microambiente Tumoral
16.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607096

RESUMO

Chimeric antigen receptor (CAR)-T cells represent a promising immunotherapeutic approach for the treatment of various malignant and non-malignant diseases. CAR-T cells are genetically modified T cells that express a chimeric protein that recognizes and binds to a cell surface target, resulting in the killing of the target cell. Traditional CAR-T cell manufacturing methods are labor-intensive, expensive, and may carry the risk of contamination. The CliniMACS Prodigy, an automated cell processor, allows for manufacturing cell therapy products at a clinical scale in a closed system, minimizing the risk of contamination. Processing occurs semi-automatically under the control of a computer and thus minimizes human involvement in the process, which saves time and reduces variability and errors. This manuscript and video describes the T cell transduction (TCT) process for manufacturing CAR-T cells using this processor. The TCT process involves CD4+/CD8+ T cell enrichment, activation, transduction with a viral vector, expansion, and harvest. Using the Activity Matrix, a functionality that allows ordering and timing of these steps, the TCT process can be customized extensively. We provide a walk-through of CAR-T cell manufacturing in compliance with current Good Manufacturing Practice (cGMP) and discuss required release testing and preclinical experiments that will support an Investigational New Drug (IND) application. We demonstrate the feasibility and discuss the advantages and disadvantages of using a semi-automatic process for clinical CAR-T cell manufacturing. Finally, we describe an ongoing investigator-initiated clinical trial that targets pediatric B-cell malignancies [NCT05480449] as an example of how this manufacturing process can be applied in a clinical setting.


Assuntos
Receptores de Antígenos Quiméricos , Criança , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Membrana Celular , Linfócitos B
18.
Transplant Cell Ther ; 29(10): 598-607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37481241

RESUMO

Chimeric antigen receptor (CAR) T cell therapy (CAR-T) targeting the CD19 antigen on B cell acute lymphoblastic leukemia (B-ALL) has transitioned from a highly investigational therapy with limited access to a commercial therapy with established toxicities, response and survival rates, and access in numerous countries. With more than a decade of clinical study and 5 years of commercial access, data showing associations with success and failure have emerged. To address functional limitations of CAR-T and overcome constrained sample sizes when studying single-trial or single-center data, collaborative groups, including the Pediatric Real World CAR Consortium, the CAR-Multicenter Analysis, the Center for International Blood and Marrow Transplant Research, and the International BFM Study Group, among others, have been retrospectively interrogating the amassed clinical experience. The high patient numbers and varied clinical experiences compiled by these groups have defined clinical variables impacting CAR-T outcomes. Here we review published CAR-T trials and consortium/collaborative outcomes to establish variables associated with optimal response to CAR-T in children and young adults with B-ALL. We focus on findings with clinical relevance that have emerged, including data implicating pretreatment disease burden, presence of extramedullary disease, nonresponse to prior CD19 antigen targeting (blinatumomab therapy), CAR T cell dose, and fludarabine pharmacokinetics as factors impacting post-CAR-T survival. Additionally, we address the role of collaborative efforts going forward in guiding clinical practice evolution and further optimizing post-CAR-T outcomes.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Criança , Adulto Jovem , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Antígenos CD19 , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Linfoma de Burkitt/tratamento farmacológico , Linfócitos T , Estudos Multicêntricos como Assunto
19.
Science ; 381(6656): 436-443, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499029

RESUMO

Hematopoietic stem cells (HSCs) are the source of all blood cells over an individual's lifetime. Diseased HSCs can be replaced with gene-engineered or healthy HSCs through HSC transplantation (HSCT). However, current protocols carry major side effects and have limited access. We developed CD117/LNP-messenger RNA (mRNA), a lipid nanoparticle (LNP) that encapsulates mRNA and is targeted to the stem cell factor receptor (CD117) on HSCs. Delivery of the anti-human CD117/LNP-based editing system yielded near-complete correction of hematopoietic sickle cells. Furthermore, in vivo delivery of pro-apoptotic PUMA (p53 up-regulated modulator of apoptosis) mRNA with CD117/LNP affected HSC function and permitted nongenotoxic conditioning for HSCT. The ability to target HSCs in vivo offers a nongenotoxic conditioning regimen for HSCT, and this platform could be the basis of in vivo genome editing to cure genetic disorders, which would abrogate the need for HSCT.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Proteínas Proto-Oncogênicas c-kit , RNA Mensageiro , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , RNA Mensageiro/genética , Animais , Humanos , Camundongos
20.
Blood Adv ; 7(16): 4479-4491, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37315175

RESUMO

Late acute graft-versus-host disease (GVHD) is defined as de novo acute GVHD presenting beyond 100 days after allogeneic hematopoietic cell transplantation (HCT) without manifestations of chronic GVHD. Data are limited regarding its characteristics, clinical course, and risk factors because of underrecognition and changes in classification. We evaluated 3542 consecutive adult recipients of first HCTs at 24 Mount Sinai Acute GVHD International Consortium (MAGIC) centers between January 2014 and August 2021 to better describe the clinical evolution and outcomes of late acute GVHD. The cumulative incidence of classic acute GVHD that required systemic treatment was 35.2%, and an additional 5.7% of patients required treatment for late acute GVHD. At the onset of symptoms, late acute GVHD was more severe than classic acute GVHD based on both clinical and MAGIC algorithm probability biomarker parameters and showed a lower overall response rate on day 28. Both clinical and biomarker grading at the time of treatment stratified the risk of nonrelapse mortality (NRM) in patients with classic and late acute GVHD, respectively, but long-term NRM and overall survival did not differ between patients with classic and late acute GVHD. Advanced age, female-to-male sex mismatch, and the use of reduced intensity conditioning were associated with the development of late acute GVHD, whereas the use of posttransplant cyclophosphamide-based GVHD prevention was protective mainly because of shifts in GVHD timing. Because overall outcomes were comparable, our findings, although not definitive, suggest that similar treatment strategies, including eligibility for clinical trials, based solely on clinical presentation at onset are appropriate.


Assuntos
Doença Enxerto-Hospedeiro , Adulto , Humanos , Masculino , Feminino , Incidência , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/epidemiologia , Doença Enxerto-Hospedeiro/etiologia , Doença Aguda , Biomarcadores , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA