Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543262

RESUMO

A threat to human health in developed and, in particular, in developing countries, counterfeit medicines represent the largest identified fraud market worldwide. 3D screen printing (3DSP), an additive manufacturing technology that enables large-scale production, offers unique opportunities to combat counterfeit drugs. One such possibility is the generation of oral dosage forms with a distinct colored inner structure that becomes visible upon breakage and cannot be copied with conventional manufacturing methods. To illustrate this, we designed tablets containing a blue cross. Owing to paste properties and the limited dimensions of the cross, the production process was chosen to be continuous, involving two screen and paste changes. The two pastes (tablet body, cross) were identical except for the blue color of the latter. This ensured the build-up and mechanical stability of the resulting tablets in a mass production environment. The ensuing tablets were found to be uniform in weight and size and to comply with regulatory requirements for hardness, friability, and disintegration time (immediate release). Moreover, all tablets exhibited the covert anticounterfeit feature. The study delivers a proof-of-concept for incorporating complex structures into tablets using 3DSP and showcases the power of the technology offering new avenues for combating counterfeit drugs.

2.
Chemistry ; 30(26): e202400160, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446081

RESUMO

Hydrogen bonds are a versatile tool for creating fibrous, bottlebrush-like assemblies of polymeric building blocks. However, a delicate balance of forces exists between the steric repulsion of the polymer chains and these directed supramolecular forces. In this work we have systematically investigated the influence of structural parameters of the attached polymers on the assembly behaviour of benzene trisurea (BTU) and benzene tris(phenylalanine) (BTP) conjugates in water. Polymers with increasing main chain lengths and different side chain sizes were prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization of hydroxyethyl acrylate (HEA), tri(ethylene glycol) methyl ether acrylate (TEGA) and oligo(ethylene glycol) methyl ether acrylate (OEGA). The resulting structures were analyzed using small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Both BTU and BTP formed fibres with PHEA attached, but a transition to spherical morphologies was observed at degrees of polymerisation (DP) of 70 and above. Overall, the main chain length appeared to be a dominating factor in inducing morphology transitions. Increasing the side chain size generally had a similar effect but mainly impeded any aggregation as is the case of POEGA. Interestingly, BTP conjugates still formed fibres, suggesting that the stronger intermolecular interactions can compensate partially for the steric repulsion.

3.
Small ; 20(21): e2306482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109123

RESUMO

Inflammatory bowel disease (IBD) has become a globally prevalent chronic disease with no causal therapeutic options. Targeted drug delivery systems with selectivity for inflamed areas in the gastrointestinal tract promise to reduce severe drug-related side effects. By creating three distinct nanostructures (vesicles, spherical, and wormlike micelles) from the same amphiphilic block copolymer poly(butyl acrylate)-block-poly(ethylene oxide) (PBA-b-PEO), the effect of nanoparticle shape on human mucosal penetration is systematically identified. An Ussing chamber technique is established to perform the ex vivo experiments on human colonic biopsies, demonstrating that the shape of polymeric nanostructures represents a rarely addressed key to tissue selectivity required for efficient IBD treatment. Wormlike micelles specifically enter inflamed mucosa from patients with IBD, but no significant uptake is observed in healthy tissue. Spheres (≈25 nm) and vesicles (≈120 nm) enter either both normal and inflamed tissue types or do not penetrate any tissue. According to quantitative image analysis, the wormlike nanoparticles localize mainly within immune cells, facilitating specific targeting, which is crucial for further increasing the efficacy of IBD treatment. These findings therefore demonstrate the untapped potential of wormlike nanoparticles not only to selectively target the inflamed human mucosa, but also to target key pro-inflammatory cells.


Assuntos
Doenças Inflamatórias Intestinais , Micelas , Polímeros , Humanos , Polímeros/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Nanopartículas/química , Inflamação/tratamento farmacológico , Inflamação/patologia , Sistemas de Liberação de Medicamentos
4.
Macromol Rapid Commun ; 43(21): e2200428, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35751415

RESUMO

The reversible addition-fragmentation chain-transfer (RAFT) process has become a versatile tool for the preparation of defined polymers tolerating a large variety of functional groups. Several dithioesters, trithiocarbonates, xanthates, or dithiocarbamates have been developed as effective chain transfer agents (CTAs), but only a few examples have been reported, where the resulting end groups are directly considered for a secondary use besides controlling the polymerization. Herein, it is demonstrated that ß-hydroxy dithiocinnamic esters represent a hitherto overlooked class of materials, which are originally designed for the complexation of transition metals but may as well act as reversible CTAs. Modified with a suitable leaving group (R-group), these vinyl conjugated dithioesters indeed provide reasonable control over the polymerization of acrylates, acrylamides, or styrene via the RAFT process. Kinetic studies reveal linear evolutions of molar mass with conversion, while different substituents on the aromatic unit has only a minor influence. Block extensions prove the livingness of the polymer chains, although extended polymerization times may lead to side reactions. The resulting dithiocinnamic ester end groups are still able to form complexes with platinum, which verifies that the structural integrity of the end group is maintained. These findings open a versatile new route to tailor-made polymer-bound metal complexes.


Assuntos
Ésteres , Polímeros , Ligantes , Cinética , Polimerização , Polímeros/química
5.
Beilstein J Org Chem ; 17: 2621-2628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760028

RESUMO

Controlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber. A slow transition from different organic solvents to water leads first to the formation of µm-long fibers, which can subsequently be fragmented by ultrasonication or dual asymmetric centrifugation. The latter allows for a better adjustment of applied shear stresses, and thus enables access to differently sized fragments depending on time and rotation rate. Extended sonication and scission analysis further allowed an estimation of tensile strengths of around 16 MPa for both the BTU and BTP systems. In combination with the high kinetic stability of these SPBs, the applied top-down methods represent an easily implementable technique toward 1D polymer nanostructures with an adjustable length in the range of interest for perspective biomedical applications.

6.
Angew Chem Int Ed Engl ; 60(46): 24716-24723, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34542227

RESUMO

Reactive polymersomes represent a versatile artificial cargo carrier system that can facilitate an immediate release in response to a specific stimulus. The herein presented oxidation-sensitive polymersomes feature a time-delayed release mechanism in an oxidative environment, which can be precisely adjusted by either tuning the membrane thickness or partial pre-oxidation. These polymeric vesicles are conveniently prepared by PISA allowing the straightforward and effective in situ encapsulation of cargo molecules, as shown for dyes and enzymes. Kinetic studies revealed a critical degree of oxidation causing the destabilization of the membrane, while no release of the cargo is observed beforehand. The encapsulation of glucose oxidase directly transforms these polymersomes into glucose-sensitive vesicles, as small molecules including sugars can passively penetrate their membrane. Considering the ease of preparation, these polymersomes represent a versatile platform for the confinement and burst release of cargo molecules after a precisely adjustable time span in the presence of specific triggers, such as H2 O2 or glucose.

7.
ACS Macro Lett ; 10(7): 837-843, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549195

RESUMO

Strong directional hydrogen bonds represent a suitable supramolecular force to drive the one-dimensional (1D) aqueous self-assembly of polymeric amphiphiles resulting in cylindrical polymer brushes. However, our understanding of the kinetics in these assembly processes is still limited. We here demonstrate that the obtained morphologies for our recently reported benzene tris-urea and tris-peptide conjugates are strongly pathway-dependent. A controlled transfer from solutions in organic solvents to aqueous environments enabled a rate-dependent formation of kinetically trapped but stable nanostructures ranging from small cylindrical or spherical objects (<50 nm) to remarkably large fibers (>2 µm). A detailed analysis of the underlying assembly mechanism revealed a cooperative nature despite the steric demands of the polymers. Nucleation is induced by hydrophobic interactions crossing a critical water content, followed by an elongation process due to the strong hydrogen bonds. These findings open an interesting new pathway to control the length of 1D polymer nanostructures.


Assuntos
Nanofibras , Nanoestruturas , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Nanoestruturas/química , Polímeros/química , Água/química
8.
Macromol Rapid Commun ; 42(8): e2000585, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274820

RESUMO

The assembly of supramolecular polymer bottlebrushes in aqueous systems is, in most cases, associated with a lateral aggregation of the supramolecular building blocks in addition to their axial stacking. Here, it is demonstrated that this limitation can be overcome by attaching three polymer chains to a central supramolecular unit that possesses a sufficiently high number of hydrogen bonding units to compensate for the increased steric strain. Therefore, a 1,3,5-benzenetrisurea-polyethylene oxide conjugate is modified with different peptide units located next to the urea groups which should facilitate self-assembly in water. For a single amino acid per arm, spherical micelles are obtained for all three tested amino acids (alanine, leucine, and phenylalanine) featuring different hydrophobicities. Only a slight increase in size and solution stability of spherical micelles is observed with increasing hydrophobicity of amino acid unit. In contrast, introducing two amino acid units per arm and thus increasing the number of hydrogen bonds per unimer molecule results in the formation of cylindrical structures, that is, supramolecular polymer bottlebrushes, despite a suppressed lateral aggregation. Consequently, it can be concluded that the number of hydrogen bonds has a more profound impact on the resulting solution morphology than the hydrophobicity of the amino acid unit.


Assuntos
Polímeros , Água , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas
9.
Chem Commun (Camb) ; 56(38): 5079-5110, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32347854

RESUMO

The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.

10.
J Colloid Interface Sci ; 557: 488-497, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541918

RESUMO

HYPOTHESIS: Molecules forming directed intermolecular hydrogen bonds, such as the well-known benzene-1,3,5-tricarboxamides (BTA) motif, are known to self-assemble into long fibrous structures. However, only a few of these systems have so far demonstrated the ability to form such anisotropic nanostructures, if they are combined with hydrophilic polymers to create an amphiphilic material. Here, we designed BTA-polymer conjugates to investigate whether the directionality of the hydrogen bonds or the ratio of hydrophobic to hydrophilic parts of the molecule, and thus the packing parameter, is decisive for obtaining anisotropic supramolecular structures in water. EXPERIMENTS: Poly(ethylene glycol) was conjugated to BTA moieties with varying lengths of hydrophobic alkyl spacers ranging from two to twelve methylene units. The resulting amphiphilic materials were characterized in aqueous solution by light and small-angle neutron scattering, analytical ultracentrifugation, and cryo-transmission electron microscopy. FINDINGS: While spherical micelles were observed for C6 and C10 alkyl spacers, anisotropic structures were only present in case of the C12 spacer. The comparison to an analogous material, which lacks the directed hydrogen bonds, revealed that the BTA motif cannot provide a sufficient driving force to induce anisotropic structures, but increases the packing density in the hydrophobic part. Therefore, the packing parameter governs the appearance of anisotropic aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA