Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6691): 119-124, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484038

RESUMO

Newly copied sister chromatids are tethered together by the cohesin complex, but how sister chromatid cohesion coordinates with DNA replication is poorly understood. Prevailing models suggest that cohesin complexes, bound to DNA before replication, remain behind the advancing replication fork to keep sister chromatids together. By visualizing single replication forks colliding with preloaded cohesin complexes, we find that the replisome instead pushes cohesin to where a converging replisome is met. Whereas the converging replisomes are removed during DNA replication termination, cohesin remains on nascent DNA and provides cohesion. Additionally, we show that CMG (CDC45-MCM2-7-GINS) helicase disassembly during replication termination is vital for proper cohesion in budding yeast. Together, our results support a model wherein sister chromatid cohesion is established during DNA replication termination.


Assuntos
Cromátides , Coesinas , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Troca de Cromátide Irmã , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Coesinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 83(16): 2925-2940.e8, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37499663

RESUMO

Homologous recombination (HR) is essential for error-free repair of DNA double-strand breaks, perturbed replication forks (RFs), and post-replicative single-stranded DNA (ssDNA) gaps. To initiate HR, the recombination mediator and tumor suppressor protein BRCA2 facilitates nucleation of RAD51 on ssDNA prior to stimulation of RAD51 filament growth by RAD51 paralogs. Although ssDNA binding by BRCA2 has been implicated in RAD51 nucleation, the function of double-stranded DNA (dsDNA) binding by BRCA2 remains unclear. Here, we exploit single-molecule (SM) imaging to visualize BRCA2-mediated RAD51 nucleation in real time using purified proteins. We report that BRCA2 nucleates and stabilizes RAD51 on ssDNA either directly or through an unappreciated diffusion-assisted delivery mechanism involving binding to and sliding along dsDNA, which requires the cooperative action of multiple dsDNA-binding modules in BRCA2. Collectively, our work reveals two distinct mechanisms of BRCA2-dependent RAD51 loading onto ssDNA, which we propose are critical for its diverse functions in maintaining genome stability and cancer suppression.


Assuntos
Proteína BRCA2 , Rad51 Recombinase , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA de Cadeia Simples/genética , DNA/metabolismo , Reparo do DNA , Ligação Proteica
3.
Nat Commun ; 13(1): 2416, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504909

RESUMO

A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.


Assuntos
DNA Viral , Integrases , Animais , Humanos , Domínio Catalítico , DNA Viral/metabolismo , Integrases/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Modelos Moleculares , Retroviridae/genética , Ovinos/genética , Integração Viral
4.
Essays Biochem ; 65(1): 1-3, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33860798

RESUMO

Biological processes are orchestrated by complex networks of molecules. Conventional approaches for studying the action of biomolecules operate on a population level, averaging out any inhomogeneities within the ensemble. Investigating one biological macromolecule at a time allows researchers to directly probe individual behaviours, and thus characterise the intrinsic molecular heterogeneity of the system. Single-molecule methods have unravelled unexpected modes of action for many seemingly well-characterised biomolecules and often proved instrumental in understanding the intricate mechanistic basis of biological processes. This collection of reviews aims to showcase how single-molecule techniques can be used to address important biological questions and to inspire biochemists to 'zoom in' to the population and probe individual molecular behaviours, beyond the ensemble average. Furthermore, this issue of Essays in Biochemistry is the very first written and edited entirely by early career researchers, and so it also highlights the strength, diversity and excellence of the younger generation single-molecule scientists who drive this exciting field of research forward.


Assuntos
Bioquímica , Nanotecnologia , Humanos , Nanotecnologia/métodos
5.
Proc Natl Acad Sci U S A ; 113(42): 11841-11846, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698144

RESUMO

Many human proteins contain intrinsically disordered regions, and disorder in these proteins can be fundamental to their function-for example, facilitating transient but specific binding, promoting allostery, or allowing efficient posttranslational modification. SasG, a multidomain protein implicated in host colonization and biofilm formation in Staphylococcus aureus, provides another example of how disorder can play an important role. Approximately one-half of the domains in the extracellular repetitive region of SasG are intrinsically unfolded in isolation, but these E domains fold in the context of their neighboring folded G5 domains. We have previously shown that the intrinsic disorder of the E domains mediates long-range cooperativity between nonneighboring G5 domains, allowing SasG to form a long, rod-like, mechanically strong structure. Here, we show that the disorder of the E domains coupled with the remarkable stability of the interdomain interface result in cooperative folding kinetics across long distances. Formation of a small structural nucleus at one end of the molecule results in rapid structure formation over a distance of 10 nm, which is likely to be important for the maintenance of the structural integrity of SasG. Moreover, if this normal folding nucleus is disrupted by mutation, the interdomain interface is sufficiently stable to drive the folding of adjacent E and G5 domains along a parallel folding pathway, thus maintaining cooperative folding.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Domínios Proteicos , Dobramento de Proteína , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Intrinsicamente Desordenadas/genética , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Desdobramento de Proteína
6.
Nat Commun ; 6: 7271, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26027519

RESUMO

Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed 'clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length.


Assuntos
Proteínas de Bactérias/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana/química , Dobramento de Proteína , Aderência Bacteriana , Biofilmes , Cristalografia por Raios X , Estrutura Terciária de Proteína , Staphylococcus aureus , Termodinâmica
7.
Proc Natl Acad Sci U S A ; 109(17): E1011-8, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493247

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis form communities (called biofilms) on inserted medical devices, leading to infections that affect many millions of patients worldwide and cause substantial morbidity and mortality. As biofilms are resistant to antibiotics, device removal is often required to resolve the infection. Thus, there is a need for new therapeutic strategies and molecular data that might assist their development. Surface proteins S. aureus surface protein G (SasG) and accumulation-associated protein (S. epidermidis) promote biofilm formation through their "B" regions. B regions contain tandemly arrayed G5 domains interspersed with approximately 50 residue sequences (herein called E) and have been proposed to mediate intercellular accumulation through Zn(2+)-mediated homodimerization. Although E regions are predicted to be unstructured, SasG and accumulation-associated protein form extended fibrils on the bacterial surface. Here we report structures of E-G5 and G5-E-G5 from SasG and biophysical characteristics of single and multidomain fragments. E sequences fold cooperatively and form interlocking interfaces with G5 domains in a head-to-tail fashion, resulting in a contiguous, elongated, monomeric structure. E and G5 domains lack a compact hydrophobic core, and yet G5 domain and multidomain constructs have thermodynamic stabilities only slightly lower than globular proteins of similar size. Zn(2+) does not cause SasG domains to form dimers. The work reveals a paradigm for formation of fibrils on the 100-nm scale and suggests that biofilm accumulation occurs through a mechanism distinct from the "zinc zipper." Finally, formation of two domains by each repeat (as in SasG) might reduce misfolding in proteins when the tandem arrangement of highly similar sequences is advantageous.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Staphylococcus aureus/metabolismo , Staphylococcus epidermidis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Dimerização , Dados de Sequência Molecular , Dobramento de Proteína , Termodinâmica
8.
J Bacteriol ; 192(21): 5663-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20817770

RESUMO

The SasG surface protein of Staphylococcus aureus has been shown to promote the formation of biofilm. SasG comprises an N-terminal A domain and repeated B domains. Here we demonstrate that SasG is involved in the accumulation phase of biofilm, a process that requires a physiological concentration of Zn(2+). The B domains, but not the A domain, are required. Purified recombinant B domain protein can form dimers in vitro in a Zn(2+)-dependent fashion. Furthermore, the protein can bind to cells that have B domains anchored to their surface and block biofilm formation. The full-length SasG protein exposed on the cell surface is processed within the B domains to a limited degree, resulting in cleaved proteins of various lengths being released into the supernatant. Some of the released molecules associate with the surface-exposed B domains that remain attached to the cell. Studies using inhibitors and mutants failed to identify any protease that could cause the observed cleavage within the B domains. Extensively purified recombinant B domain protein is very labile, and we propose that cleavage occurs spontaneously at labile peptide bonds and that this is necessary for biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Staphylococcus aureus/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Parede Celular , Quelantes/farmacologia , Escherichia coli , Regulação Bacteriana da Expressão Gênica/fisiologia , Lactococcus lactis , Proteínas de Membrana/genética , Mutação , Ácido Pentético/farmacologia , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Staphylococcus aureus/genética , Staphylococcus epidermidis , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA