Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Allergy Clin Immunol Glob ; 3(3): 100252, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38745865

RESUMO

Background: Clinical testing, including food-specific skin and serum IgE level tests, provides limited accuracy to predict food allergy. Confirmatory oral food challenges (OFCs) are often required, but the associated risks, cost, and logistic difficulties comprise a barrier to proper diagnosis. Objective: We sought to utilize advanced machine learning methodologies to integrate clinical variables associated with peanut allergy to create a predictive model for OFCs to improve predictive performance over that of purely statistical methods. Methods: Machine learning was applied to the Learning Early about Peanut Allergy (LEAP) study of 463 peanut OFCs and associated clinical variables. Patient-wise cross-validation was used to create ensemble models that were evaluated on holdout test sets. These models were further evaluated by using 2 additional peanut allergy OFC cohorts: the IMPACT study cohort and a local University of Michigan cohort. Results: In the LEAP data set, the ensemble models achieved a maximum mean area under the curve of 0.997, with a sensitivity and specificity of 0.994 and 1.00, respectively. In the combined validation data sets, the top ensemble model achieved a maximum area under the curve of 0.871, with a sensitivity and specificity of 0.763 and 0.980, respectively. Conclusions: Machine learning models for predicting peanut OFC results have the potential to accurately predict OFC outcomes, potentially minimizing the need for OFCs while increasing confidence in food allergy diagnoses.

2.
Diagnostics (Basel) ; 14(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337750

RESUMO

The aim of this research is to apply the learning using privileged information paradigm to sepsis prognosis. We used signal processing of electrocardiogram and electronic health record data to construct support vector machines with and without privileged information to predict an increase in a given patient's quick-Sequential Organ Failure Assessment score, using a retrospective dataset. We applied this to both a small, critically ill cohort and a broader cohort of patients in the intensive care unit. Within the smaller cohort, privileged information proved helpful in a signal-informed model, and across both cohorts, electrocardiogram data proved to be informative to creating the prediction. Although learning using privileged information did not significantly improve results in this study, it is a paradigm worth studying further in the context of using signal processing for sepsis prognosis.

3.
PLoS One ; 18(11): e0295016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015947

RESUMO

BACKGROUND: Timely referral for advanced therapies (i.e., heart transplantation, left ventricular assist device) is critical for ensuring optimal outcomes for heart failure patients. Using electronic health records, our goal was to use data from a single hospitalization to develop an interpretable clinical decision-making system for predicting the need for advanced therapies at the subsequent hospitalization. METHODS: Michigan Medicine heart failure patients from 2013-2021 with a left ventricular ejection fraction ≤ 35% and at least two heart failure hospitalizations within one year were used to train an interpretable machine learning model constructed using fuzzy logic and tropical geometry. Clinical knowledge was used to initialize the model. The performance and robustness of the model were evaluated with the mean and standard deviation of the area under the receiver operating curve (AUC), the area under the precision-recall curve (AUPRC), and the F1 score of the ensemble. We inferred membership functions from the model for continuous clinical variables, extracted decision rules, and then evaluated their relative importance. RESULTS: The model was trained and validated using data from 557 heart failure hospitalizations from 300 patients, of whom 193 received advanced therapies. The mean (standard deviation) of AUC, AUPRC, and F1 scores of the proposed model initialized with clinical knowledge was 0.747 (0.080), 0.642 (0.080), and 0.569 (0.067), respectively, showing superior predictive performance or increased interpretability over other machine learning methods. The model learned critical risk factors predicting the need for advanced therapies in the subsequent hospitalization. Furthermore, our model displayed transparent rule sets composed of these critical concepts to justify the prediction. CONCLUSION: These results demonstrate the ability to successfully predict the need for advanced heart failure therapies by generating transparent and accessible clinical rules although further research is needed to prospectively validate the risk factors identified by the model.


Assuntos
Insuficiência Cardíaca , Função Ventricular Esquerda , Humanos , Volume Sistólico , Hospitalização , Redes Neurais de Computação , Insuficiência Cardíaca/terapia
4.
PLOS Digit Health ; 2(6): e0000281, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384608

RESUMO

Missing data presents a challenge for machine learning applications specifically when utilizing electronic health records to develop clinical decision support systems. The lack of these values is due in part to the complex nature of clinical data in which the content is personalized to each patient. Several methods have been developed to handle this issue, such as imputation or complete case analysis, but their limitations restrict the solidity of findings. However, recent studies have explored how using some features as fully available privileged information can increase model performance including in SVM. Building on this insight, we propose a computationally efficient kernel SVM-based framework (l2-SVMp+) that leverages partially available privileged information to guide model construction. Our experiments validated the superiority of l2-SVMp+ over common approaches for handling missingness and previous implementations of SVMp+ in both digit recognition, disease classification and patient readmission prediction tasks. The performance improves as the percentage of available privileged information increases. Our results showcase the capability of l2-SVMp+ to handle incomplete but important features in real-world medical applications, surpassing traditional SVMs that lack privileged information. Additionally, l2-SVMp+ achieves comparable or superior model performance compared to imputed privileged features.

5.
IEEE J Biomed Health Inform ; 27(1): 239-250, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194714

RESUMO

A model's interpretability is essential to many practical applications such as clinical decision support systems. In this article, a novel interpretable machine learning method is presented, which can model the relationship between input variables and responses in humanly understandable rules. The method is built by applying tropical geometry to fuzzy inference systems, wherein variable encoding functions and salient rules can be discovered by supervised learning. Experiments using synthetic datasets were conducted to demonstrate the performance and capacity of the proposed algorithm in classification and rule discovery. Furthermore, we present a pilot application in identifying heart failure patients that are eligible for advanced therapies as proof of principle. From our results on this particular application, the proposed network achieves the highest F1 score. The network is capable of learning rules that can be interpreted and used by clinical providers. In addition, existing fuzzy domain knowledge can be easily transferred into the network and facilitate model training. In our application, with the existing knowledge, the F1 score was improved by over 5%. The characteristics of the proposed network make it promising in applications requiring model reliability and justification.


Assuntos
Lógica Fuzzy , Insuficiência Cardíaca , Humanos , Reprodutibilidade dos Testes , Algoritmos , Aprendizado de Máquina
6.
PLoS One ; 17(10): e0275033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223330

RESUMO

The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segmentation in about 5 minutes that would otherwise require an average of 7h of manual work by experienced clinicians. This work focuses on the integration of the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with several parameters from different centers for a generalized clinical application. Our results on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to 0.962±0.02. Our code is available on our public GitHub repository.


Assuntos
Inteligência Artificial , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada de Feixe Cônico/métodos , Cabeça , Processamento de Imagem Assistida por Computador/métodos , Cintilografia , Crânio/diagnóstico por imagem
7.
J Heart Lung Transplant ; 41(12): 1781-1789, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192320

RESUMO

BACKGROUND: Systems level barriers to heart failure (HF) care limit access to HF advanced therapies (heart transplantation, left ventricular assist devices). There is a need for automated systems that can help clinicians ensure patients with HF are evaluated for HF advanced therapies at the appropriate time to optimize outcomes. METHODS: We performed a retrospective study using the REVIVAL (Registry Evaluation of Vital Information for VADs in Ambulatory Life) and INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) registries. We developed a novel machine learning model based on principles of tropical geometry and fuzzy logic that can accommodate clinician knowledge and provide recommendations regarding need for advanced therapies evaluations that are accessible to end-users. RESULTS: The model was trained and validated using data from 4,694 HF patients. When initiated with clinical knowledge from HF and transplant cardiologists, the model achieved an F1 score of 43.8%, recall of 51.1%, and precision of 46.9%. The model achieved comparable performance compared with other commonly used machine learning models. Importantly, our model was 1 of only 3 models providing transparent and parsimonious clinical rules, significantly outperforming the other 2 models. Eleven clinical rules were extracted from the model which can be leveraged in clinical practice. CONCLUSIONS: A machine learning model capable of accepting clinical knowledge and making accessible recommendations was trained to identify patients with advanced HF. While this model was developed for HF care, the methodology has multiple potential uses in other important clinical applications.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Humanos , Estudos Retrospectivos , Insuficiência Cardíaca/cirurgia , Aprendizado de Máquina , Algoritmos
8.
BMC Med Inform Decis Mak ; 22(1): 203, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915430

RESUMO

BACKGROUND: Traumatic Brain Injury (TBI) is a common condition with potentially severe long-term complications, the prediction of which remains challenging. Machine learning (ML) methods have been used previously to help physicians predict long-term outcomes of TBI so that appropriate treatment plans can be adopted. However, many ML techniques are "black box": it is difficult for humans to understand the decisions made by the model, with post-hoc explanations only identifying isolated relevant factors rather than combinations of factors. Moreover, such models often rely on many variables, some of which might not be available at the time of hospitalization. METHODS: In this study, we apply an interpretable neural network model based on tropical geometry to predict unfavorable outcomes at six months from hospitalization in TBI patients, based on information available at the time of admission. RESULTS: The proposed method is compared to established machine learning methods-XGBoost, Random Forest, and SVM-achieving comparable performance in terms of area under the receiver operating characteristic curve (AUC)-0.799 for the proposed method vs. 0.810 for the best black box model. Moreover, the proposed method allows for the extraction of simple, human-understandable rules that explain the model's predictions and can be used as general guidelines by clinicians to inform treatment decisions. CONCLUSIONS: The classification results for the proposed model are comparable with those of traditional ML methods. However, our model is interpretable, and it allows the extraction of intelligible rules. These rules can be used to determine relevant factors in assessing TBI outcomes and can be used in situations when not all necessary factors are known to inform the full model's decision.


Assuntos
Lesões Encefálicas Traumáticas , Redes Neurais de Computação , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Humanos , Aprendizado de Máquina , Prognóstico , Curva ROC
9.
Anesthesiology ; 137(5): 586-601, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950802

RESUMO

BACKGROUND: Postoperative hemodynamic deterioration among cardiac surgical patients can indicate or lead to adverse outcomes. Whereas prediction models for such events using electronic health records or physiologic waveform data are previously described, their combined value remains incompletely defined. The authors hypothesized that models incorporating electronic health record and processed waveform signal data (electrocardiogram lead II, pulse plethysmography, arterial catheter tracing) would yield improved performance versus either modality alone. METHODS: Intensive care unit data were reviewed after elective adult cardiac surgical procedures at an academic center between 2013 and 2020. Model features included electronic health record features and physiologic waveforms. Tensor decomposition was used for waveform feature reduction. Machine learning-based prediction models included a 2013 to 2017 training set and a 2017 to 2020 temporal holdout test set. The primary outcome was a postoperative deterioration event, defined as a composite of low cardiac index of less than 2.0 ml min-1 m-2, mean arterial pressure of less than 55 mmHg sustained for 120 min or longer, new or escalated inotrope/vasopressor infusion, epinephrine bolus of 1 mg or more, or intensive care unit mortality. Prediction models analyzed data 8 h before events. RESULTS: Among 1,555 cases, 185 (12%) experienced 276 deterioration events, most commonly including low cardiac index (7.0% of patients), new inotrope (1.9%), and sustained hypotension (1.4%). The best performing model on the 2013 to 2017 training set yielded a C-statistic of 0.803 (95% CI, 0.799 to 0.807), although performance was substantially lower in the 2017 to 2020 test set (0.709, 0.705 to 0.712). Test set performance of the combined model was greater than corresponding models limited to solely electronic health record features (0.641; 95% CI, 0.637 to 0.646) or waveform features (0.697; 95% CI, 0.693 to 0.701). CONCLUSIONS: Clinical deterioration prediction models combining electronic health record data and waveform data were superior to either modality alone, and performance of combined models was primarily driven by waveform data. Decreased performance of prediction models during temporal validation may be explained by data set shift, a core challenge of healthcare prediction modeling.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Hipotensão , Humanos , Adulto , Registros Eletrônicos de Saúde , Aprendizado de Máquina , Epinefrina
10.
Sci Rep ; 12(1): 11347, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790802

RESUMO

Postoperative patients are at risk of life-threatening complications such as hemodynamic decompensation or arrhythmia. Automated detection of patients with such risks via a real-time clinical decision support system may provide opportunities for early and timely interventions that can significantly improve patient outcomes. We utilize multimodal features derived from digital signal processing techniques and tensor formation, as well as the electronic health record (EHR), to create machine learning models that predict the occurrence of several life-threatening complications up to 4 hours prior to the event. In order to ensure that our models are generalizable across different surgical cohorts, we trained the models on a cardiac surgery cohort and tested them on vascular and non-cardiac acute surgery cohorts. The best performing models achieved an area under the receiver operating characteristic curve (AUROC) of 0.94 on training and 0.94 and 0.82, respectively, on testing for the 0.5-hour interval. The AUROCs only slightly dropped to 0.93, 0.92, and 0.77, respectively, for the 4-hour interval. This study serves as a proof-of-concept that EHR data and physiologic waveform data can be combined to enable the early detection of postoperative deterioration events.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Aprendizado de Máquina , Registros Eletrônicos de Saúde , Humanos , Período Pós-Operatório , Curva ROC
11.
BMC Med Imaging ; 22(1): 39, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260105

RESUMO

BACKGROUND: Both early detection and severity assessment of liver trauma are critical for optimal triage and management of trauma patients. Current trauma protocols utilize computed tomography (CT) assessment of injuries in a subjective and qualitative (v.s. quantitative) fashion, shortcomings which could both be addressed by automated computer-aided systems that are capable of generating real-time reproducible and quantitative information. This study outlines an end-to-end pipeline to calculate the percentage of the liver parenchyma disrupted by trauma, an important component of the American Association for the Surgery of Trauma (AAST) liver injury scale, the primary tool to assess liver trauma severity at CT. METHODS: This framework comprises deep convolutional neural networks that first generate initial masks of both liver parenchyma (including normal and affected liver) and regions affected by trauma using three dimensional contrast-enhanced CT scans. Next, during the post-processing step, human domain knowledge about the location and intensity distribution of liver trauma is integrated into the model to avoid false positive regions. After generating the liver parenchyma and trauma masks, the corresponding volumes are calculated. Liver parenchymal disruption is then computed as the volume of the liver parenchyma that is disrupted by trauma. RESULTS: The proposed model was trained and validated on an internal dataset from the University of Michigan Health System (UMHS) including 77 CT scans (34 with and 43 without liver parenchymal trauma). The Dice/recall/precision coefficients of the proposed segmentation models are 96.13/96.00/96.35% and 51.21/53.20/56.76%, respectively, in segmenting liver parenchyma and liver trauma regions. In volume-based severity analysis, the proposed model yields a linear regression relation of 0.95 in estimating the percentage of liver parenchyma disrupted by trauma. The model shows an accurate performance in avoiding false positives for patients without any liver parenchymal trauma. These results indicate that the model is generalizable on patients with pre-existing liver conditions, including fatty livers and congestive hepatopathy. CONCLUSION: The proposed algorithms are able to accurately segment the liver and the regions affected by trauma. This pipeline demonstrates an accurate performance in estimating the percentage of liver parenchyma that is affected by trauma. Such a system can aid critical care medical personnel by providing a reproducible quantitative assessment of liver trauma as an alternative to the sometimes subjective AAST grading system that is used currently.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
12.
BMC Med Imaging ; 22(1): 10, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045816

RESUMO

BACKGROUND: Automated segmentation of coronary arteries is a crucial step for computer-aided coronary artery disease (CAD) diagnosis and treatment planning. Correct delineation of the coronary artery is challenging in X-ray coronary angiography (XCA) due to the low signal-to-noise ratio and confounding background structures. METHODS: A novel ensemble framework for coronary artery segmentation in XCA images is proposed, which utilizes deep learning and filter-based features to construct models using the gradient boosting decision tree (GBDT) and deep forest classifiers. The proposed method was trained and tested on 130 XCA images. For each pixel of interest in the XCA images, a 37-dimensional feature vector was constructed based on (1) the statistics of multi-scale filtering responses in the morphological, spatial, and frequency domains; and (2) the feature maps obtained from trained deep neural networks. The performance of these models was compared with those of common deep neural networks on metrics including precision, sensitivity, specificity, F1 score, AUROC (the area under the receiver operating characteristic curve), and IoU (intersection over union). RESULTS: With hybrid under-sampling methods, the best performing GBDT model achieved a mean F1 score of 0.874, AUROC of 0.947, sensitivity of 0.902, and specificity of 0.992; while the best performing deep forest model obtained a mean F1 score of 0.867, AUROC of 0.95, sensitivity of 0.867, and specificity of 0.993. Compared with the evaluated deep neural networks, both models had better or comparable performance for all evaluated metrics with lower standard deviations over the test images. CONCLUSIONS: The proposed feature-based ensemble method outperformed common deep convolutional neural networks in most performance metrics while yielding more consistent results. Such a method can be used to facilitate the assessment of stenosis and improve the quality of care in patients with CAD.


Assuntos
Angiografia Coronária/métodos , Doença das Coronárias/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Humanos
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1810-1813, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891638

RESUMO

Diagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis.


Assuntos
Osteoartrite , Transtornos da Articulação Temporomandibular , Biomarcadores , Humanos , Aprendizado de Máquina , Osteoartrite/diagnóstico , Articulação Temporomandibular , Transtornos da Articulação Temporomandibular/diagnóstico
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2948-2951, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891863

RESUMO

In this paper, machine learning approaches are proposed to support dental researchers and clinicians to study the shape and position of dental crowns and roots, by implementing a Patient Specific Classification and Prediction tool that includes RootCanalSeg and DentalModelSeg algorithms and then merges the output of these tools for intraoral scanning and volumetric dental imaging. RootCanalSeg combines image processing and machine learning approaches to automatically segment the root canals of the lower and upper jaws from large datasets, providing clinical information on tooth long axis for orthodontics, endodontics, prosthodontic and restorative dentistry procedures. DentalModelSeg includes segmenting the teeth from the crown shape to provide clinical information on each individual tooth. The merging algorithm then allows users to integrate dental models for quantitative assessments. Precision in dentistry has been mainly driven by dental crown surface characteristics, but information on tooth root morphology and position is important for successful root canal preparation, pulp regeneration, planning of orthodontic movement, restorative and implant dentistry. In this paper we propose a patient specific classification and prediction of dental root canal and crown shape analysis workflow that employs image processing and machine learning methods to analyze crown surfaces, obtained by intraoral scanners, and three-dimensional volumetric images of the jaws and teeth root canals, obtained by cone beam computed tomography (CBCT).


Assuntos
Cavidade Pulpar , Polpa Dentária , Tomografia Computadorizada de Feixe Cônico , Coroas , Cavidade Pulpar/diagnóstico por imagem , Humanos , Regeneração
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2952-2955, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891864

RESUMO

In order to diagnose TMJ pathologies, we developed and tested a novel algorithm, MandSeg, that combines image processing and machine learning approaches for automatically segmenting the mandibular condyles and ramus. A deep neural network based on the U-Net architecture was trained for this task, using 109 cone-beam computed tomography (CBCT) scans. The ground truth label maps were manually segmented by clinicians. The U-Net takes 2D slices extracted from the 3D volumetric images. All the 3D scans were cropped depending on their size in order to keep only the mandibular region of interest. The same anatomic cropping region was used for every scan in the dataset. The scans were acquired at different centers with different resolutions. Therefore, we resized all scans to 512×512 in the pre-processing step where we also performed contrast adjustment as the original scans had low contrast. After the pre-processing, around 350 slices were extracted from each scan, and used to train the U-Net model. For the cross-validation, the dataset was divided into 10 folds. The training was performed with 60 epochs, a batch size of 8 and a learning rate of 2×10-5. The average performance of the models on the test set presented 0.95 ± 0.05 AUC, 0.93 ± 0.06 sensitivity, 0.9998 ± 0.0001 specificity, 0.9996 ± 0.0003 accuracy, and 0.91 ± 0.03 F1 score. This study findings suggest that fast and efficient CBCT image segmentation of the mandibular condyles and ramus from different clinical data sets and centers can be analyzed effectively. Future studies can now extract radiomic and imaging features as potentially relevant objective diagnostic criteria for TMJ pathologies, such as osteoarthritis (OA). The proposed segmentation will allow large datasets to be analyzed more efficiently for disease classification.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Mandíbula/diagnóstico por imagem
16.
BMC Med Inform Decis Mak ; 21(1): 364, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963444

RESUMO

BACKGROUND: Rapid and irregular ventricular rates (RVR) are an important consequence of atrial fibrillation (AF). Raw accelerometry data in combination with electrocardiogram (ECG) data have the potential to distinguish inappropriate from appropriate tachycardia in AF. This can allow for the development of a just-in-time intervention for clinical treatments of AF events. The objective of this study is to develop a machine learning algorithm that can distinguish episodes of AF with RVR that are associated with low levels of activity. METHODS: This study involves 45 patients with persistent or paroxysmal AF. The ECG and accelerometer data were recorded continuously for up to 3 weeks. The prediction of AF episodes with RVR and low activity was achieved using a deterministic probabilistic finite-state automata (DPFA)-based approach. Rapid and irregular ventricular rate (RVR) is defined as having heart rates (HR) greater than 110 beats per minute (BPM) and high activity is defined as greater than 0.75 quantile of the activity level. The AF events were annotated using the FDA-cleared BeatLogic algorithm. Various time intervals prior to the events were used to determine the longest prediction intervals for predicting AF with RVR episodes associated with low levels of activity. RESULTS: Among the 961 annotated AF events, 292 met the criterion for RVR episode. There were 176 and 116 episodes with low and high activity levels respectively. Out of the 961 AF episodes, 770 (80.1%) were used in the training data set and the remaining 191 intervals were held out for testing. The model was able to predict AF with RVR and low activity up to 4.5 min before the events. The mean prediction performance gradually decreased as the time to events increased. The overall Area under the ROC Curve (AUC) for the model lies within the range of 0.67-0.78. CONCLUSION: The DPFA algorithm can predict AF with RVR associated with low levels of activity up to 4.5 min before the onset of the event. This would enable the development of just-in-time interventions that could reduce the morbidity and mortality associated with AF and other similar arrhythmias.


Assuntos
Fibrilação Atrial , Algoritmos , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Frequência Cardíaca , Ventrículos do Coração , Humanos
17.
Med Image Anal ; 73: 102180, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303888

RESUMO

Optical colonoscopy is an essential diagnostic and prognostic tool for many gastrointestinal diseases, including cancer screening and staging, intestinal bleeding, diarrhea, abdominal symptom evaluation, and inflammatory bowel disease assessment. However, the evaluation, classification, and quantification of findings from colonoscopy are subject to inter-observer variation. Automated assessment of colonoscopy is of interest considering the subjectivity present in qualitative human interpretations of colonoscopy findings. Localization of the camera is essential to interpreting the meaning and context of findings for diseases evaluated by colonoscopy. In this study, we propose a camera localization system to estimate the relative location of the camera and classify the colon into anatomical segments. The camera localization system begins with non-informative frame detection and removal. Then a self-training end-to-end convolutional neural network is built to estimate the camera motion, where several strategies are proposed to improve its robustness and generalization on endoscopic videos. Using the estimated camera motion a camera trajectory can be derived and a relative location index calculated. Based on the estimated location index, anatomical colon segment classification is performed by constructing a colon template. The proposed motion estimation algorithm was evaluated on an external dataset containing the ground truth for camera pose. The experimental results show that the performance of the proposed method is superior to other published methods. The relative location index estimation and anatomical region classification were further validated using colonoscopy videos collected from routine clinical practice. This validation yielded an average accuracy in classification of 0.754, which is substantially higher than the performances obtained using location indices built from other methods.


Assuntos
Algoritmos , Colonoscopia , Colo , Humanos , Movimento (Física) , Redes Neurais de Computação
18.
Semin Orthod ; 27(2): 78-86, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34305383

RESUMO

With the exponential growth of computational systems and increased patient data acquisition, dental research faces new challenges to manage a large quantity of information. For this reason, data science approaches are needed for the integrative diagnosis of multifactorial diseases, such as Temporomandibular joint (TMJ) Osteoarthritis (OA). The Data science spectrum includes data capture/acquisition, data processing with optimized web-based storage and management, data analytics involving in-depth statistical analysis, machine learning (ML) approaches, and data communication. Artificial intelligence (AI) plays a crucial role in this process. It consists of developing computational systems that can perform human intelligence tasks, such as disease diagnosis, using many features to help in the decision-making support. Patient's clinical parameters, imaging exams, and molecular data are used as the input in cross-validation tasks, and human annotation/diagnosis is also used as the gold standard to train computational learning models and automatic disease classifiers. This paper aims to review and describe AI and ML techniques to diagnose TMJ OA and data science approaches for imaging processing. We used a web-based system for multi-center data communication, algorithms integration, statistics deployment, and process the computational machine learning models. We successfully show AI and data-science applications using patients' data to improve the TMJ OA diagnosis decision-making towards personalized medicine.

19.
Am Heart J ; 241: 1-5, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34157300

RESUMO

Symptoms in atrial fibrillation are generally assumed to correspond to heart rhythm; however, patient affect - the experience of feelings, emotion or mood - is known to frequently modulate how patients report symptoms but this has not been studied in atrial fibrillation. In this study, we investigated the relationship between affect, symptoms and heart rhythm in patients with paroxysmal or persistent atrial fibrillation. We found that presence of negative affect portended reporting of more severe symptoms to the same or greater extent than heart rhythm.


Assuntos
Sintomas Afetivos , Fibrilação Atrial , Efeitos Psicossociais da Doença , Eletrocardiografia Ambulatorial/métodos , Qualidade de Vida , Avaliação de Sintomas , Afeto/fisiologia , Sintomas Afetivos/diagnóstico , Sintomas Afetivos/fisiopatologia , Idoso , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/psicologia , Dor no Peito/etiologia , Dor no Peito/psicologia , Correlação de Dados , Dispneia/etiologia , Dispneia/psicologia , Emoções/fisiologia , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Avaliação de Sintomas/métodos , Avaliação de Sintomas/estatística & dados numéricos
20.
Comput Biol Med ; 134: 104463, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993014

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury with global prevalence and high mortality. Chest x-rays (CXR) are critical in the early diagnosis and treatment of ARDS. However, imaging findings may not result in proper identification of ARDS due to a number of reasons, including nonspecific appearance of radiological features, ambiguity in a patient's case due to the pathological stage of the disease, and poor inter-rater reliability from interpretations of CXRs by multiple clinical experts. This study demonstrates the potential capability of methodologies in artificial intelligence, machine learning, and image processing to overcome these challenges and quantitatively assess CXRs for presence of ARDS. We propose and describe Directionality Measure, a novel feature engineering technique used to capture the "cloud-like" appearance of diffuse alveolar damage as a mathematical concept. This study also examines the effectiveness of using an off-the-shelf, pretrained deep learning model as a feature extractor in addition to standard features extracted from the histogram and gray-level co-occurrence matrix (GLCM). Data was collected from hospitalized patients at Michigan Medicine's intensive care unit and the cohort's inclusion criteria was specifically designed to be representative of patients at risk of developing ARDS. Multiple machine learning models were used to evaluate these features with 5-fold cross-validation and the final performance was reported on a hold-out, temporally distinct test set. With AdaBoost, Directionality Measure achieved an accuracy of 78% and AUC of 74% - outperforming classification results using features from the histogram (75% accuracy and 73% AUC), GLCM (76% accuracy and 73% AUC), and ResNet-50 (77% accuracy and 73% AUC). Further experimental results demonstrated that using all feature sets in combination achieved the best overall performance, yielding an accuracy of 83% and AUC of 79% with AdaBoost. These results demonstrate the potential capability of using the proposed methodologies to complement current clinical analysis for detection of ARDS from CXRs.


Assuntos
Aprendizado Profundo , Síndrome do Desconforto Respiratório , Inteligência Artificial , Humanos , Reprodutibilidade dos Testes , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA