Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
JBMR Plus ; 7(12): e10841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130768

RESUMO

GαS, the stimulatory G protein α-subunit that raises intracellular cAMP levels by activating adenylyl cyclase, plays a vital role in bone development, maintenance, and remodeling. Previously, using transgenic mice overexpressing GαS in osteoblasts (GS-Tg), we demonstrated the influence of osteoblast GαS level on osteogenesis, bone turnover, and skeletal responses to hyperparathyroidism. To further investigate whether alterations in GαS levels affect endochondral bone repair, a postnatal bone regenerative process that recapitulates embryonic bone development, we performed stabilized tibial osteotomy in male GS-Tg mice at 8 weeks of age and examined the progression of fracture healing by micro-CT, histomorphometry, and gene expression analysis over a 4-week period. Bone fractures from GS-Tg mice exhibited diminished cartilage formation at the time of peak soft callus formation at 1 week post-fracture followed by significantly enhanced callus mineralization and new bone formation at 2 weeks post-fracture. The opposing effects on chondrogenesis and osteogenesis were validated by downregulation of chondrogenic markers and upregulation of osteogenic markers. Histomorphometric analysis at times of increased bone formation (2 and 3 weeks post-fracture) revealed excess fibroblast-like cells on newly formed woven bone surfaces and elevated osteocyte density in GS-Tg fractures. Coincident with enhanced callus mineralization and bone formation, GS-Tg mice showed elevated active ß-catenin and Wntless proteins in osteoblasts at 2 weeks post-fracture, further substantiated by increased mRNA encoding various canonical Wnts and Wnt target genes, suggesting elevated osteoblastic Wnt secretion and Wnt/ß-catenin signaling. The GS-Tg bony callus at 4 weeks post-fracture exhibited greater mineral density and decreased polar moment of inertia, resulting in improved material stiffness. These findings highlight that elevated GαS levels increase Wnt signaling, conferring an increased osteogenic differentiation potential at the expense of chondrogenic differentiation, resulting in improved mechanical integrity. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

2.
Connect Tissue Res ; 64(4): 350-361, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37046359

RESUMO

BACKGROUND: ß-Arrestin 2 (ß-arr2) binds activated parathyroid hormone (PTH) receptors stimulating internalization. PTH stimulates both anabolic and catabolic effect on bone depending on the way it is administered. Intermittent PTH stimulation increases trabecular bone formation in mice, but this is decreased in mice lacking ß-arr 2, suggesting a role for ß-arr 2 in the anabolic effects of PTH. The role of ß-arr 2 in the catabolic effects of continuous PTH (cPTH) treatment is not known. OBJECTIVE: To assess the effects of cPTH administration on bone in mice lacking ß-arr 2 compared to wild-type (WT). METHODS: Groups of male and female WT or ß-arr2 knockout (KO) mice were administered either PTH or phosphate-buffered saline by osmotic pumps for 2 weeks. Following treatment, serum calcium and phosphate levels were measured, bone structure and mineral density were measured by microcomputed tomography, and bone cells measured by static and dynamic histomorphometry. RESULTS: ß-arr2 KO had no effects on skeletal development in mice of either sex. PTH treatment caused hypercalcemia and hypophosphatemia and decreased trabecular and cortical bone only in male WT mice. ß-arr2 KO in male mice completely abrogated the effects of PTH on bone, while in female ß-arr2 KO mice, PTH treatment increased trabecular bone with no effects on cortical bone. CONCLUSIONS: These results demonstrate a profound sex effect on skeletal responses to cPTH treatment, suggesting a protective effect of estrogen on bone loss. ß-arr2 plays a role in restraining the anabolic effects of PTH in both male and female mice.


Assuntos
Anabolizantes , Hormônio Paratireóideo , Masculino , Feminino , Animais , Camundongos , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/metabolismo , beta-Arrestina 2/metabolismo , beta-Arrestina 2/farmacologia , Anabolizantes/farmacologia , Microtomografia por Raio-X , Densidade Óssea , Fosfatos/farmacologia , Camundongos Knockout
3.
J Endocrinol ; 254(1): 13-26, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638565

RESUMO

GS, the stimulatory heterotrimeric G protein, is an essential regulator of osteogenesis and bone turnover. To determine if increasing GαS in osteoblasts alters bone responses to hyperparathyroidism, we used a transgenic mouse line overexpressing GαS in osteoblasts (GS-Tg mice). Primary osteoblasts from GS-Tg mice showed increased basal and parathyroid hormone (PTH)-stimulated cAMP and greater responses to PTH than cells from WT mice. Skeletal responses to 2-week continuous PTH administration (cPTH) in female mice resulted in trabecular bone loss in WT mice but 74% and 34% increase in trabecular bone mass in long bones and vertebrae, respectively, in GS-Tg mice. Vertebral biomechanical strength was compromised by cPTH treatment in WT mice but not in GS-Tg. Increased peritrabecular fibrosis was greatly increased by cPTH in Gs-Tg compared to WT mice and corresponded with greater increases in Wnt pathway proteins in trabecular bone. Cortical bone responded negatively to cPTH in WT and Gs-Tg mice with large increases in porosity, decreased cortical thickness and compromised biomechanical properties. These results demonstrate that hyperparathyroidism can increase trabecular bone when GS expression and cAMP stimulation in osteoblasts are increased but this is not the case in cortical bone where increased GS expression exacerbates cortical bone loss.


Assuntos
Hiperparatireoidismo , Osteoblastos , Animais , Osso e Ossos/metabolismo , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hiperparatireoidismo/metabolismo , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Hormônio Paratireóideo/farmacologia , Proteínas Wnt
4.
J Orthop Res ; 40(10): 2294-2307, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35146795

RESUMO

Two commercially available porous coatings, Gription and Porocoat, were compared for the first time in a challenging intra-articular, weight-bearing, ovine model. Gription has evolved from Porocoat and has higher porosity, coefficient of friction, and microtextured topography, which are expected to enhance bone ingrowth. Cylindrical implants were press-fit into the weight-bearing regions of ovine femoral condyles and bone ingrowth and fixation strength evaluated 4, 8, and 16 weeks postoperatively. Biomechanical push-out tests were performed on lateral femoral condyles (LFCs) to evaluate the strength of the bone-implant interface. Bone ingrowth was assessed in medial femoral condyles (MFCs) as well as implants retrieved from LFCs following biomechanical testing using backscattered electron microscopy and histology. By 16 weeks, Gription-coated implants exhibited higher force (2455 ± 1362 vs. 1002 ± 1466 N; p = 0.046) and stress (12.60 ± 6.99 vs. 5.14 ± 7.53 MPa; p = 0.046) at failure, and trended towards higher stiffness (11,510 ± 7645 vs. 5010 ± 8374 N/mm; p = 0.061) and modulus of elasticity (591 ± 392 vs. 256 ± 431 MPa; p = 0.061). A strong, positive correlation was detected between bone ingrowth in LFC implants and failure force (r = 0.93, p < 10-13 ). By 16 weeks, bone ingrowth in Gription-coated implants in MFCs was 10.50 ± 6.31% compared to 5.88 ± 2.77% in Porocoat (p = 0.095). Observations of the bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. Gription provided superior fixation strength and bone ingrowth by 16 weeks.


Assuntos
Osseointegração , Titânio , Animais , Osso e Ossos , Porosidade , Próteses e Implantes , Ovinos
5.
Kidney Int ; 99(5): 1118-1126, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33417997

RESUMO

To study human idiopathic hypercalciuria we developed an animal model, genetic hypercalciuric stone-forming rats, whose pathophysiology parallels that of human idiopathic hypercalciuria. Fed the oxalate precursor, hydroxyproline, every rat in this model develops calcium oxalate stones. Using this rat model, we tested whether chlorthalidone and potassium citrate combined would reduce calcium oxalate stone formation and improve bone quality more than either agent alone. These rats (113 generation) were fed a normal calcium and phosphorus diet with hydroxyproline and divided into four groups: diets plus potassium chloride as control, potassium citrate, chlorthalidone plus potassium chloride, or potassium citrate plus chlorthalidone. Urine was collected at six, 12, and 18 weeks and kidney stone formation and bone parameters were determined. Compared to potassium chloride, potassium citrate reduced urinary calcium, chlorthalidone reduced it further and potassium citrate plus chlorthalidone even further. Potassium citrate plus chlorthalidone decreased urine oxalate compared to all other groups. There were no significant differences in calcium oxalate supersaturation in any group. Neither potassium citrate nor chlorthalidone altered stone formation. However, potassium citrate plus chlorthalidone significantly reduced stone formation. Vertebral trabecular bone increased with chlorthalidone and potassium citrate plus chlorthalidone. Cortical bone area increased with chlorthalidone but not potassium citrate or potassium citrate plus chlorthalidone. Mechanical properties of trabecular bone improved with chlorthalidone, but not with potassium citrate plus chlorthalidone. Thus in genetic hypercalciuric stone-forming rats fed a diet resulting in calcium oxalate stone formation, potassium citrate plus chlorthalidone prevented stone formation better than either agent alone. Chlorthalidone alone improved bone quality, but adding potassium citrate provided no additional benefit.


Assuntos
Cálculos Renais , Citrato de Potássio , Animais , Cálcio , Oxalato de Cálcio , Clortalidona , Hipercalciúria , Cálculos Renais/genética , Cálculos Renais/prevenção & controle , Ratos
6.
Sci Transl Med ; 12(561)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938796

RESUMO

Although most children survive B cell acute lymphoblastic leukemia (B-ALL), they frequently experience long-term, treatment-related health problems, including osteopenia and osteonecrosis. Because some children present with fractures at ALL diagnosis, we considered the possibility that leukemic B cells contribute directly to bone pathology. To identify potential mechanisms of B-ALL-driven bone destruction, we examined the p53 -/-; Rag2 -/-; Prkdcscid/scid triple mutant (TM) mice and p53 -/-; Prkdcscid/scid double mutant (DM) mouse models of spontaneous B-ALL. In contrast to DM animals, leukemic TM mice displayed brittle bones, and the TM leukemic cells overexpressed Rankl, encoding receptor activator of nuclear factor κB ligand. RANKL is a key regulator of osteoclast differentiation and bone loss. Transfer of TM leukemic cells into immunodeficient recipient mice caused trabecular bone loss. To determine whether human B-ALL can exert similar effects, we evaluated primary human B-ALL blasts isolated at diagnosis for RANKL expression and their impact on bone pathology after their transplantation into NOD.Prkdcscid/scidIl2rgtm1Wjl /SzJ (NSG) recipient mice. Primary B-ALL cells conferred bone destruction evident in increased multinucleated osteoclasts, trabecular bone loss, destruction of the metaphyseal growth plate, and reduction in adipocyte mass in these patient-derived xenografts (PDXs). Treating PDX mice with the RANKL antagonist recombinant osteoprotegerin-Fc (rOPG-Fc) protected the bone from B-ALL-induced destruction even under conditions of heavy tumor burden. Our data demonstrate a critical role of the RANK-RANKL axis in causing B-ALL-mediated bone pathology and provide preclinical support for RANKL-targeted therapy trials to reduce acute and long-term bone destruction in these patients.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Ligante RANK , Animais , Linfócitos B , Humanos , Camundongos , Camundongos Endogâmicos NOD , Osteoclastos
7.
J Biomed Mater Res B Appl Biomater ; 108(6): 2670-2680, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32159274

RESUMO

Bone grafting procedures are commonly used to manage bone defects in the craniofacial region. Monetite is an excellent biomaterial option for bone grafting, however, it is limited by lack of osteoinduction. Several molecules can be incorporated within the monetite matrix to promote bone regeneration. The aim was to investigate whether incorporating bone forming drug conjugates (C3 and C6) within monetite can improve their ability to regenerate bone in bone defects. Bilateral bone defects were created in the mandible of 24 Sprague-Dawley rats and were then packed with monetite control, monetite+C3 or monetite+C6. After 2 and 4 weeks, post-mortem samples were analyzed using microcomputed tomography, histology and back-scattered electron microscopy to calculate the percentages of bone formation and remaining graft material. At 2 and 4 weeks, monetite with C3 and C6 demonstrated higher bone formation than monetite control, while monetite+C6 had the highest bone formation percentage at 4 weeks. There were no significant differences in the remaining graft material between the groups at 2 or 4 weeks. Incorporating these anabolic drug conjugates within the degradable matrix of monetite present a promising bone graft alternative for bone regeneration and repair in orthopedic as well as oral and maxillofacial applications.


Assuntos
Anabolizantes/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Mandíbula/anormalidades , Anabolizantes/efeitos adversos , Anabolizantes/química , Animais , Substitutos Ósseos , Transplante Ósseo/métodos , Fosfatos de Cálcio/efeitos adversos , Fosfatos de Cálcio/química , Sobrevivência de Enxerto , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
8.
J Periodontol ; 91(11): 1521-1531, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32100284

RESUMO

BACKGROUND: Deproteinized bovine bone mineral (DBBM) has been extensively studied and used for bone regeneration in oral and maxillofacial surgery. However, it lacks an osteoinductive ability. We developed two novel bone anabolic conjugated drugs, known as C3 and C6, of an inactive bisphosphonate and a bone activating synthetic prostaglandin agonist. The aim was to investigate whether these drugs prebound to DBBM granules have the potential to achieve rapid and enhanced bone regeneration. METHODS: Bilateral defects (4.3 mm diameter circular through and through) were created in mandibular angles of 24 Sprague-Dawley rats were filled with DBBM Control, DBBM with C3 or DBBM with C6 (n = 8 defects per group/ each timepoint). After 2 and 4 weeks, postmortem samples were analyzed by microcomputed tomography followed by backscattering electron microscopy and histology. RESULTS: DBBM grafts containing the C3 and C6 conjugated drugs showed significantly more bone formation than DBBM control at 2 and 4 weeks. The C6 containing DBBM demonstrated the highest percentage of new bone formation at 4 weeks. There was no significant difference in the percentage of the remaining graft between the different groups at 2 or 4 weeks. CONCLUSIONS: DBBM granules containing conjugated drugs C3 and C6 induced greater new bone volume generated and increased the bone formation rate more than the DBBM controls. This is expected to allow the development of clinical treatments that provide more predictable and improved bone regeneration for bone defect repair in oral and maxillofacial surgery.


Assuntos
Substitutos Ósseos , Preparações Farmacêuticas , Animais , Regeneração Óssea , Substitutos Ósseos/farmacologia , Substitutos Ósseos/uso terapêutico , Bovinos , Membranas Artificiais , Minerais , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
9.
J Biomed Mater Res B Appl Biomater ; 108(1): 253-262, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009177

RESUMO

Calcium phosphate-based biomaterials are extensively used for bone replacement and regeneration in orthopedic, dental, and maxillofacial surgical applications. The injury induced by surgical implantation of bone replacement graft materials initiates a cascade of host responses, starting with blood-biomaterial contact, protein adsorption on the material surface, blood coagulation, and leukocyte responses. During the initial acute inflammatory response, polymorphonuclear neutrophils (PMNs) and monocytes, abundant circulating leukocytes of the myeloid lineage, are recruited to the site of inflammation. In addition to responding to pathogenic challenges, these cells respond to particulate substances within the body including crystals of monosodium urate (MSU). Host responses toward grafts impact short- and long-term success in tissue engineering and regenerative applications. Although multinucleated osteoclasts, formed by monocyte/macrophage fusion, are generally thought to be responsible for resorption of implant biomaterials, the ability of different biomaterials to trigger PMNs, which are invariably present at the early stages after implant surgery, and are abundant in the oral cavity, has never been tested. In this article, we present analysis of the response of human blood-derived PMNs and monocytes toward brushite, monetite, and calcium polyphosphate (CPP) biomaterial substrates and compare this to the response to MSU crystals, the latter serving as a positive control. Employing multicolor flow cytometry to look at PMN and monocyte cell surface markers of activation to gauge the response to different biomaterials, we found that both types of myeloid cells are highly activated after exposure to brushite, monetite, and MSU but not CPP. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:253-262, 2020.


Assuntos
Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Leucócitos/metabolismo , Teste de Materiais , Polifosfatos/farmacologia , Humanos , Osteoclastos/metabolismo
10.
J Anat ; 236(3): 448-462, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31729033

RESUMO

There is considerable variation in the gross morphology and tissue properties among the bones of human infants, children, adolescents, and adults. Using 18 known-age individuals (nfemale  = 8, nmale  = 9, nunknown  = 1; birth to 21 years old), from a well-documented cemetery collection, Spitalfields Christ Church, London, UK, this study explores growth-related changes in cortical and trabecular bone microstructure. Micro-CT scans of mid-shaft middle thoracic ribs are used for quantitative analysis. Results are then compared to previously quantified conventional histomorphometry of the same sample. Total area (Tt.Ar), cortical area (Ct.Ar), cortical thickness (Ct.Th), and the major (Maj.Dm) and minor (Min.Dm) diameters of the rib demonstrate positive correlations with age. Pore density (Po.Dn) increases, but age-related changes to cortical porosity (Ct.Po) appear to be non-linear. Trabecular thickness (Tb.th) and trabecular separation (Tb.Sp) increase with age, whereas trabecular bone pattern factor (Tb.Pf), structural model index (SMI), and connectivity density (Conn.D) decrease with age. Sex-based differences were not identified for any of the variables included in this study. Some samples display clear evidence of diagenetic alteration without corresponding changes in radiopacity, which compromises the reliability of bone mineral density (BMD) data in the study of past populations. Cortical porosity data are not correlated with two-dimensional measures of osteon population density (OPD). This suggests that unfilled resorption spaces contribute more significantly to cortical porosity than do the Haversian canals of secondary osteons. Continued research using complementary imaging techniques and a wide array of histological variables will increase our understanding of age- and sex-specific ontogenetic patterns within and among human populations.


Assuntos
Densidade Óssea/fisiologia , Desenvolvimento Ósseo/fisiologia , Costelas/crescimento & desenvolvimento , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Costelas/anatomia & histologia , Costelas/diagnóstico por imagem , Caracteres Sexuais , Microtomografia por Raio-X , Adulto Jovem
11.
JBMR Plus ; 3(12): e10237, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31844825

RESUMO

Pathological bone loss is a regular feature of postmenopausal osteoporosis, and the microstructural changes along with the bone loss make the individual prone to getting hip, spine, and wrist fractures. We have developed a new conjugate drug named C3, which has a synthetic, stable EP4 agonist (EP4a) covalently linked to an inactive alendronate (ALN) that binds to bone and allows physiological remodeling. After losing bone for 12 weeks, seven groups of rats were treated for 8 weeks via tail-vein injection. The groups were: C3 conjugate at low and high doses, vehicle-treated ovariectomy (OVX) and sham, C1 (a similar conjugate, but with active ALN at high dose), inactive ALN alone, and a mixture of unconjugated ALN and EP4a to evaluate the conjugation effects. Bone turnover was determined by dynamic and static histomorphometry; µCT was employed to determine bone microarchitecture; and bone mechanical properties were evaluated via biomechanical testing. Treatment with C3 significantly increased trabecular bone volume and vertebral BMD versus OVX controls. There was also significant improvement in the vertebral load-bearing abilities and stimulation of bone formation in femurs after C3 treatment. This preclinical research revealed that C3 resulted in significant anabolic effects on trabecular bone, and EP4a and ALN conjugation components are vital to conjugate anabolic efficacy. A combined therapy using an EP4 selective agonist anabolic agent linked to an inactive ALN is presented here that produces significant anabolic effects, allows bone remodeling, and has the potential for treating postmenopausal osteoporosis or other diseases where bone strengthening would be beneficial. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

12.
J Bone Miner Res ; 34(8): 1473-1486, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31188496

RESUMO

The absence of functional dystrophin with mutations of the dystrophin-encoding gene in Duchenne muscular dystrophy (DMD) results in muscle inflammation and degeneration, as well as bone fragility. Long-term glucocorticoid therapy delays the muscular disease progression but suppresses growth hormone secretion, resulting in short stature and further deleterious effects on bone strength. This study evaluated the therapeutic potential of daily growth hormone therapy in growing mdx mice as a model of DMD. Growth hormone treatment on its own or in combination with glucocorticoids significantly improved muscle histology and function and decreased markers of inflammation in mdx mice. Glucocorticoid treatment thinned cortical bone and decreased bone strength and toughness. Despite the minimal effects of growth hormone on bone microarchitecture, it significantly improved biomechanical properties of femurs and vertebrae, even in the presence of glucocorticoid treatment. Together these studies suggest that the use of growth hormone in DMD should be considered for improvements to muscle and bone health. © 2019 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos , Glucocorticoides/farmacologia , Hormônio do Crescimento/farmacologia , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
13.
J Am Soc Nephrol ; 30(7): 1163-1173, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31101664

RESUMO

BACKGROUND: The pathophysiology of genetic hypercalciuric stone-forming rats parallels that of human idiopathic hypercalciuria. In this model, all animals form calcium phosphate stones. We previously found that chlorthalidone, but not potassium citrate, decreased stone formation in these rats. METHODS: To test whether chlorthalidone and potassium citrate combined would reduce calcium phosphate stone formation more than either medication alone, four groups of rats were fed a fixed amount of a normal calcium and phosphorus diet, supplemented with potassium chloride (as control), potassium citrate, chlorthalidone (with potassium chloride to equalize potassium intake), or potassium citrate plus chlorthalidone. We measured urine every 6 weeks and assessed stone formation and bone quality at 18 weeks. RESULTS: Potassium citrate reduced urine calcium compared with controls, chlorthalidone reduced it further, and potassium citrate plus chlorthalidone reduced it even more. Chlorthalidone increased urine citrate and potassium citrate increased it even more; the combination did not increase it further. Potassium citrate, alone or with chlorthalidone, increased urine calcium phosphate supersaturation, but chlorthalidone did not. All control rats formed stones. Potassium citrate did not alter stone formation. No stones formed with chlorthalidone, and rats given potassium citrate plus chlorthalidone had some stones but fewer than controls. Rats given chlorthalidone with or without potassium citrate had higher bone mineral density and better mechanical properties than controls, whereas those given potassium citrate did not. CONCLUSIONS: In genetic hypercalciuric stone-forming rats, chlorthalidone is superior to potassium citrate alone or combined with chlorthalidone in reducing calcium phosphate stone formation and improving bone quality.


Assuntos
Densidade Óssea/efeitos dos fármacos , Fosfatos de Cálcio/metabolismo , Clortalidona/farmacologia , Hipercalciúria/tratamento farmacológico , Cálculos Renais/prevenção & controle , Citrato de Potássio/farmacologia , Animais , Clortalidona/administração & dosagem , Hipercalciúria/complicações , Masculino , Oxalatos/urina , Citrato de Potássio/administração & dosagem , Ratos
14.
Cell Tissue Bank ; 20(2): 287-295, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31020508

RESUMO

Structural bone allografts are often sterilized with γ-irradiation to decrease infection risk, which unfortunately degrades the bone collagen connectivity, making the bone weak and brittle. In previous studies, we successfully protected the quasi-static mechanical properties of human cortical bone by pre-treating with ribose, prior to irradiation. This study focused on the quasi-static and fatigue tensile properties of ribose treated irradiated sterilized bone allografts. Seventy-five samples were cut from the mid-shaft diaphysis of human femurs into standardized dog-bone shape geometries for quasi-static and fatigue tensile testing. Specimens were prepared in sets of three adjacent specimens. Each set was made of a normal (N), irradiated (I) and ribose pre-treated + irradiation (R) group. The R group was incubated in a 1.2 M ribose solution before γ-irradiation. The quasi-static tensile and decalcified tests were conducted to failure under displacement control. The fatigue samples were tested under cyclic loading (10 Hz, peak stress of 45MP, minimum-to-maximum stress ratio of 0.1) until failure or reaching 10 million cycles. Ribose pre-treatment significantly improved significantly the mechanical properties of irradiation sterilized human bone in the quasi-static tensile and decalcified tests. The fatigue life of the irradiated group was impaired by 99% in comparison to the normal control. Surprisingly, the R-group has significantly superior properties over the I-group and N-group (p < 0.01, p < 0.05) (> 100%). This study shows that incubating human cortical bone in a ribose solution prior to irradiation can indeed improve the fatigue life of irradiation-sterilized cortical bone allografts.


Assuntos
Fêmur/efeitos dos fármacos , Fêmur/efeitos da radiação , Raios gama/efeitos adversos , Ribose/farmacologia , Resistência à Tração/efeitos dos fármacos , Resistência à Tração/efeitos da radiação , Adolescente , Adulto , Idoso , Aloenxertos/efeitos da radiação , Diáfises/efeitos dos fármacos , Diáfises/efeitos da radiação , Feminino , Fêmur/transplante , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Mecânico , Adulto Jovem
15.
J Orthop Res ; 37(4): 832-844, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30839120

RESUMO

Bone allografts often undergo γ-irradiation sterilization to decrease infection risk. However this consequently degrades bone collagen and makes the allograft brittle. Our laboratory has previously found that pre-treatment with ribose ex vivo protects the bone. However, it remains unclear whether or not ribose-treated γ-irradiated allografts are able to unite and remodel in vivo. Using New Zealand White rabbits (NZWr), we aimed to evaluate if ribose-treated allografts can unite with host bone (compared to untreated (fresh-frozen) and conventionally-irradiated allografts). A critically-sized defect was created in the radii of NZWr and reconstructed with allografts fixed with an intramedullary Kirschner wire. Healing and union were assessed at 2, 6, and 12 weeks post operation, with radiographs, µCT, static and dynamic histomorphometry, backscatter electron microscopy, and torsion testing. Intramedullary fixation achieved stable reconstructions and bony union in all groups and no differences were found in the radiographic and biomechanical parameters tested. Interestingly, γ-irradiated allografts had significantly less bone volume due to evident resorption of the grafts. In contrast, ribose pre-treatment protected γ-irradiated allografts from this bone loss, with results similar to the fresh frozen controls. In conclusion, ribose-pretreated γ-irradiated allografts were able to unite in vivo. In addition to achieving bony union with host bone, ribose pre-treatment may protect against allograft resorption. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Assuntos
Aloenxertos/efeitos dos fármacos , Transplante Ósseo , Ribose/farmacologia , Esterilização/métodos , Aloenxertos/efeitos da radiação , Animais , Fenômenos Biomecânicos , Feminino , Coelhos , Distribuição Aleatória
16.
Glob Pediatr Health ; 6: 2333794X19835661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906820

RESUMO

Vitamin D supplementation is important for many chronic pediatric conditions to help maintain bone health; however, there is little evidence about how disease-related factors affect vitamin D status. The objective was to compare 25-hydroxyvitamin D (25(OH)D) concentrations in 3 pediatric cohorts (Duchenne muscular dystrophy [DMD], systemic lupus erythematosus [SLE], and osteogenesis imperfecta [OI]). In a retrospective study of 367 subjects, children with DMD had increased prevalence of vitamin D insufficiency (25% vs 14% [SLE] and 10% [OI], P = .002), despite higher vitamin D3 supplementation doses. Boys with DMD also had higher weight, fat mass, and lower lean mass percentage Z scores. DMD was associated with having higher rates of vitamin D insufficiency than other comparable pediatric chronic disease cohorts, the effect of which may be modulated by clinical factors such as increased adiposity. While corroboration of these results is needed given baseline differences between the patient groups, greater vitamin D supplementation doses may be required to achieve optimal serum 25(OH)D concentrations in boys with DMD.

17.
Nephron ; 142(2): 147-158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726853

RESUMO

BACKGROUND: Urine (u) calcium (Ca) excretion is directly dependent on dietary sodium (Na) intake leading to the recommendation for Na restriction in hypercalciuric kidney stone formers. However, there is no direct evidence that limiting Na intake will reduce recurrent stone formation. MATERIALS AND METHODS: We used genetic hypercalciuric stone-forming (GHS) rats, which universally form Ca phosphate (P) kidney stones, fed either a low Na (LNa, 0.05%) or normal Na (NNa, 0.4%) Na diet (D) for 18 weeks. Urine was collected at 6-week intervals. Radiographic analysis for stone formation and bone analyses were done at the conclusion of the study. RESULTS: Mean uCa was lower with LNaD than NNaD as was uP and LNaD decreased mean uNa and uChloride. There were no differences in urine supersaturation (SS) with respect to calcium phosphate (CaP) or Ca oxalate (CaOx). However, stone formation was markedly decreased with LNaD by radiographic analysis. The LNaD group had significantly lower femoral anterior-posterior diameter and volumetric bone mineral density (vBMD), but no change in vertebral trabecular vBMD. There were no differences in the bone formation rate or osteoclastic bone resorption between groups. The LNaD group had significantly lower femoral stiffness; however, the ultimate load and energy to fail was not different. CONCLUSION: Thus, a low Na diet reduced uCa and stone formation in GHS rats, even though SS with respect to CaP and CaOx was unchanged and effects on bone were modest. These data, if confirmed in humans, support dietary Na restriction to prevent recurrent Ca nephrolithiasis.


Assuntos
Hipercalciúria/genética , Cálculos Renais/prevenção & controle , Sódio na Dieta/administração & dosagem , Animais , Ratos
18.
Int J Oral Maxillofac Implants ; 34(4): e51­e63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716148

RESUMO

PURPOSE: Achieving successful and predictable alveolar ridge augmentation in the vertical dimension is extremely challenging. Several materials have been investigated to achieve vertical ridge augmentation; however, the results are highly unpredictable. The collaborative team presenting this research has developed brushite- and monetite-based grafts that incorporate in their matrix a novel bone anabolic conjugate (C3) of a bisphosphonate and a potent bone-activating EP4 receptor agonist. The study objective was to investigate the potential of these graft formulations to achieve rapid, enhanced, and clinically significant bone regeneration in the vertical dimension. MATERIALS AND METHODS: Brushite and monetite grafts were fabricated and characterized for phase purity, porosity, compressive strength, and microstructural morphology. They were implanted in 12 rabbit calvaria for 12 weeks. Each group (n = 6): brushite control, brushite with C3, monetite control, and monetite with C3. Postmortem samples were retrieved and processed for analysis. The percentage bone volume, vertical bone height gained, and graft resorption were calculated and assessed. RESULTS: The brushite and monetite grafts containing C3 integrated well onto the calvarial bone surface, with new bone extending through the graft area (36% and 80%, respectively), while the C3 lacking grafts showed decreased surface integration and bone infiltration (28% and 38%, respectively). The C3 containing brushite and monetite grafts demonstrated bone growth vertically (1.8 mm and 2.7 mm, respectively) and improved graft resorption. CONCLUSION: The brushite- and monetite-based grafts loaded with the C3 conjugate resulted in greater de novo bone formation in the vertical dimension when compared with the grafts without the drug. However, the monetite grafts produced much more and predictable vertical height gain than was achieved with brushite grafts. The advantages of this new graft drug formulation in future would be to provide more predictable vertical bone regeneration, which will ultimately benefit patients undergoing dental implant placement.


Assuntos
Aumento do Rebordo Alveolar , Fosfatos de Cálcio , Crânio , Animais , Regeneração Óssea , Transplante Ósseo , Implantação Dentária Endóssea , Coelhos
19.
Bone ; 121: 232-242, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30716510

RESUMO

Duchenne Muscular Dystrophy (DMD) is a progressive muscle disorder caused by genetic mutations of the dystrophin encoding gene. In the absence of functional dystrophin, DMD patients suffer from muscle inflammation and wasting, as well as compromised bone health with increased risk of fracture. The use of high dose glucocorticoids (GC) as the standard therapy also contributes to bone fragility. This study examined the effects of intermittent, daily administered parathyroid hormone (iPTH), an approved bone anabolic therapy, on growing bone and dystrophic muscle in the presence and absence of prednisone treatment using the Mdx mouse model of DMD. Five-weeks of prednisone treatment in Mdx mice decreased cortical bone thickness and area (p < 0.001), with a large increase in endocortical osteoclasts that were significantly improved by PTH treatment (p < 0.001). GC-induced decreases in cortical bone toughness and modulus were improved with iPTH therapy (p < 0.05). Mdx mice showed significantly less bone mass in trabecular compartments of lumbar vertebrae and iPTH treatment, with or without glucocorticoids, significantly improved structural and material properties of this bone. Prednisone improved grip strength and endurance of treadmill running, which were maintained and further improved, respectively, in co-treated Mdx mice. Altogether, our study demonstrates that iPTH therapy significantly ameliorated GC-induced bone loss and maintained or further enhanced the positive effects of GCs on dystrophic muscle function. These findings give insight into the potential for use of teriparatide to treat growing bone in children with DMD.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Glucocorticoides/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hormônio Paratireóideo/uso terapêutico , Animais , Densidade Óssea/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/metabolismo , Osso Cortical/efeitos dos fármacos , Osso Cortical/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Osteogênese/efeitos dos fármacos
20.
Am J Phys Anthropol ; 168(2): 262-278, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30628074

RESUMO

OBJECTIVES: Novel information on apartheid health conditions may be obtained through the study of recent skeletal collections. Using a backscattered scanning electron microscopy (BSE-SEM) approach, this study aims to produce bone quality and tissue mineralization data for an understudied South African population from the Western Cape province. METHODS: Using BSE-SEM imaging, cortical porosity (Ct.Po), osteocyte lacunar density (Ot.Lc.Dn), and the degree of tissue mineralization were quantified in midthoracic ribs from the Kirsten Skeletal Collection. Individuals ( n female = 75, n male = 68, and mean age = 46.3 years) were predominantly from the South Africa Colored (SAC) population group ( n SAC = 103, 72%). Full cross-sectional images of each rib were manually stitched together in Adobe Photoshop. Photomontages were imported into MATALB (Mathworks, Natick, MA) for image processing and analysis. Age-related changes in histomorphometric parameters and sex differences were examined using correlation analysis, as well as linear and nonlinear regressions. RESULTS: Young adult men have significantly less mineralized bone and fewer osteocyte lacunae, compared to women. Only men demonstrate a significant negative relationship between Ot.Lc.Dn and age. Average tissue mineralization decreases with age in women, while Ct.Po increases. Pore area (Po.Ar) does not vary with age, but pore density (Po.Dn) is highest in the perimenopause, when accelerated rates of bone turnover are first anticipated. Ct.Po is highest in the years following the predicted age of menopause, but levels off in the final decades of life. CONCLUSIONS: Men and women display disparate patterns of bone aging. Systemic disenfranchisement of non-white population groups affected bone health in South Africa, and may continue to do so today. Indicators of poor bone quality are evident in the full study sample, indicating that osteoporosis and fracture risk are not just of concern to the aged white female population.


Assuntos
Apartheid , Microscopia Eletrônica de Varredura , Costelas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antropologia Física , Criança , Feminino , Nível de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose , Costelas/anatomia & histologia , Costelas/diagnóstico por imagem , Costelas/patologia , Espalhamento de Radiação , África do Sul , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA