Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 978: 176751, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38897442

RESUMO

The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.


Assuntos
Antineoplásicos , Apoptose , Benzofuranos , Interleucina-6 , Espécies Reativas de Oxigênio , Animais , Humanos , Interleucina-6/metabolismo , Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
2.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35892900

RESUMO

The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients' stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 µM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38- subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs.

3.
Folia Histochem Cytobiol ; 52(3): 163-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25308731

RESUMO

In vitro studies have shown that amnion-produced growth factors participated in angiogenesis, re-epithelialization, and immunomodulation. The aim of our study was to investigate the growth factors and receptors produced by human amnion tissue and amniotic cells. Human amnions (hAM) were isolated, and amnion circles were dissected for in vitro analysis. Some amnion fragments were digested by the use of different methods to obtain two cell fractions, which were analysed for mesenchymal and epithelial cell markers. Amniotic circles and human amniotic cell fractions were cultured in a protein-free medium. Proteins secreted into the culture medium were analysed with a human growth factor antibody array. Conditioned culture media were added to human umbilical vein epithelial cells (HUVECs) to test for stimulation of migration (scratch test) and proliferation (Ki67 expression). Fraction 1 cells expressed both cytokeratin and mesenchymal cell markers which indicated that it was composed of a mixture of human amnion epithelial cells (hAECs) and mesenchymal stromal cells (hAMSCs). Fraction 2 cells mainly expressed cytokeratin and, therefore, were designed as hAECs. Secretion of proteins by the cultured cells increased with time. The hAM cultures secreted EGF-R, IGF, and IGFBP-2,-3 and -6; Cell Fraction 1 secreted NT-4, whereas Cell Fraction 2 secreted G-CSF, M-CSF, and PDGF. Conditioned media of hAM cultures stimulated HUVECs migration. We have showed for the first time that human amnions and amniotic cells secreted IGFBP-6, MCSF-R, PDGF-AB, FGF-6, IGFBP-4, NT-4, and VEGF-R3. We found that Cell Fraction 1, Cell Fraction 2, and the whole amnion secreted different proteins, possibly due to different proportions of amnion-derived cells and different cell-cell interactions. The hAM cell factors remained functional in vitro and induced intensified migration of HUVECs. The growth factors and receptors found in amnion or amniotic cell media might be used for regenerative medicine.


Assuntos
Âmnio/metabolismo , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Âmnio/citologia , Fracionamento Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Análise Serial de Proteínas , Cordão Umbilical/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA