Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588001

RESUMO

Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.


Assuntos
Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-abl , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Modelos Moleculares , Proteínas Tirosina Quinases/metabolismo , Domínios de Homologia de src , Mesilato de Imatinib/farmacologia
2.
J Biol Chem ; 299(10): 105142, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37553040

RESUMO

Nuclear magnetic resonance studies of many physiologically important proteins have long been impeded by the necessity to express such proteins in isotope-labeled form in higher eukaryotic cells and the concomitant high costs of providing isotope-labeled amino acids in the growth medium. Economical routes use isotope-labeled yeast or algae extracts but still require expensive isotope-labeled glutamine. Here, we have systematically quantified the effect of 15N2-glutamine on the expression and isotope labeling of different proteins in insect cells. Sufficient levels of glutamine in the medium increase the protein expression by four to five times relative to deprived conditions. 1H-15N nuclear magnetic resonance spectroscopy shows that the 15N atoms from 15N2-glutamine are scrambled with surprisingly high (60-70%) efficiency into the three amino acids alanine, aspartate, and glutamate. This phenomenon gives direct evidence that the high energy demand of insect cells during baculovirus infection and concomitant heterologous protein expression is predominantly satisfied by glutamine feeding the tricarboxylic acid cycle. To overcome the high costs of supplementing isotope-labeled glutamine, we have developed a robust method for the large-scale synthesis of 15N2-glutamine and partially deuterated 15N2-glutamine-α,ß,ß-d3 from inexpensive precursors. An application is shown for the effective large-scale expression of the isotope-labeled ß1-adrenergic receptor using the synthesized 15N2-glutamine-α,ß,ß-d3.

3.
Mol Cell ; 83(12): 2108-2121.e7, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244255

RESUMO

The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2. We identified several new CCR5 phosphorylation sites necessary for stable arrestin2 complex formation. Structures of arrestin2 in the apo form and complexes with CCR5 C-terminal phosphopeptides, together with NMR, biochemical, and functional assays, revealed three phosphoresidues in a pXpp motif that are essential for arrestin2 binding and activation. The identified motif appears responsible for robust arrestin2 recruitment in many other GPCRs. An analysis of receptor sequences and available structural and functional information provides hints on the molecular basis of arrestin2/arrestin3 isoform specificity. Our findings demonstrate how multi-site phosphorylation controls GPCR⋅arrestin interactions and provide a framework to probe the intricate details of arrestin signaling.


Assuntos
Fosfopeptídeos , Receptores CCR5 , Humanos , Fosforilação , beta-Arrestinas/metabolismo , Fosfopeptídeos/metabolismo , Receptores CCR5/metabolismo , Linhagem Celular
4.
J Am Chem Soc ; 144(47): 21728-21740, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394272

RESUMO

NMR chemical shift changes can report on the functional dynamics of biomacromolecules in solution with sizes >1 MDa. However, their interpretation requires chemical shift assignments to individual nuclei, which for large molecules often can only be obtained by tedious point mutations that may interfere with function. We present here an efficient pseudocontact shift NMR method to assign biomacromolecules using bound antibodies tagged with lanthanoid DOTA chelators. The stability of the antibody allows positioning the DOTA tag at many surface sites, providing triangulation of the macromolecule nuclei at distances >60 Å. The method provides complete assignments of valine and tyrosine 1H-15N resonances of the ß1-adrenergic receptor in various functional forms. The detected chemical shift changes reveal strong forces exerted onto the backbone of transmembrane helix 3 during signal transmission, which are absorbed by its electronic structure. The assignment method is applicable to any soluble biomacromolecule for which suitable complementary binders exist.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Receptores Acoplados a Proteínas G , Anticorpos , Tirosina
5.
Angew Chem Int Ed Engl ; 61(46): e202117276, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36257909

RESUMO

Soellner published on the interplay between allosteric and adenosine triphosphate (ATP)-competitive inhibitors of ABL kinase, showing that the latter preferably binds to different conformational states of ABL compared to allosteric agents that specifically target the ABL myristate pocket (STAMP) and deducing that asciminib cannot bind to ABL simultaneously with ATP-competitive drugs. These results are to some extent in line with ours, although our analyses of dose-response matrices from combinations of asciminib with imatinib, nilotinib or dasatinib, show neither synergy nor antagonism, but suggest additive antiproliferative effects on BCR-ABL-dependent KCL22 cells. Furthermore, our X-ray crystallographic, solution nuclear magnetic resonance (NMR), and isothermal titration calorimetry studies show that asciminib can bind ABL concomitantly with type-1 or -2 ATP-competitive inhibitors to form ternary complexes. Concomitant binding of asciminib with imatinib, nilotinib, or dasatinib might translate to benefit some chronic myeloid leukaemia patients.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Humanos , Mesilato de Imatinib/farmacologia , Dasatinibe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Proteínas de Fusão bcr-abl , Resistencia a Medicamentos Antineoplásicos
6.
Nat Chem ; 14(10): 1133-1141, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35953642

RESUMO

Recent high-pressure NMR results indicate that the preactive conformation of the ß1-adrenergic receptor (ß1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized ß1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized ß1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for ß1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of ß1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.


Assuntos
Detergentes , Receptores Acoplados a Proteínas G , Regulação Alostérica , Colesterol , Isoproterenol , Xenônio
7.
Methods Cell Biol ; 169: 115-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35623699

RESUMO

The numerous chemokines and their cognate G protein-coupled chemokine receptors on the surface of leukocytes form a complex signaling network, which regulates the immune response and also other key physiological processes. Currently only a very limited number of structures of chemokine•chemokine receptor complexes have been solved. More structures are needed for the understanding of their mechanism of action and the rational design of drugs against these highly relevant therapeutic targets. Recently, we have determined the cryo-EM structure of the human wild-type CCR5 chemokine receptor, which is also the HIV-1 coreceptor, in its active conformation bound to the chemokine super-agonist [6P4]CCL5 and the heterotrimeric Gi protein. The structure provides the rationale for the sequence-activity relation of agonist and antagonist CCR5 chemokine ligands. In this chapter, we present a detailed protocol for the preparation of the active agonist chemokine•CCR5•Gi complex for cryo-EM studies including quality controls and caveats. As such the protocol may serve as starting point for structural and biophysical studies of other chemokine•chemokine receptor complexes.


Assuntos
Receptores CCR5 , Transdução de Sinais , Quimiocina CCL5/química , Quimiocinas/metabolismo , Microscopia Crioeletrônica , Humanos , Receptores CCR5/química , Receptores CCR5/metabolismo , Receptores Acoplados a Proteínas G
8.
Magn Reson (Gott) ; 3(1): 91-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37905178

RESUMO

It was recently reported (Xie et al., 2022) that the Abelson tyrosine kinase (Abl) ATP-site inhibitor imatinib also binds to Abl's myristoyl binding pocket, which is the target of allosteric Abl inhibitors. This was based on a crystal structure of a truncated Abl kinase domain construct in complex with imatinib bound to the allosteric site as well as further isothermal titration calorimetry (ITC), NMR, and kinase activity data. Although imatinib's affinity for the allosteric site is significantly weaker (10 µM) than for the ATP site (10 nM), imatinib binding to the allosteric site may disassemble the regulatory core of Abl, thereby stimulating kinase activity, in particular for Abl mutants with reduced imatinib ATP-site affinity. It was argued that the previously observed imatinib-induced opening of the Abl regulatory core (Skora et al., 2013; Sonti et al., 2018) may be caused by the binding of imatinib to the allosteric site and not to the ATP site. We show here that this is not the case but that indeed imatinib binding to the ATP site induces the opening of the regulatory core at nanomolar concentrations. This agrees with findings that other type-II ATP-site inhibitors (nilotinib, ponatinib) disassemble the regulatory core despite demonstrated negligible binding to the allosteric site.

9.
Sci Adv ; 7(25)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34134983

RESUMO

The human CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor (GPCR) that plays a major role in inflammation and is involved in cancer, HIV, and COVID-19. Despite its importance as a drug target, the molecular activation mechanism of CCR5, i.e., how chemokine agonists transduce the activation signal through the receptor, is yet unknown. Here, we report the cryo-EM structure of wild-type CCR5 in an active conformation bound to the chemokine super-agonist [6P4]CCL5 and the heterotrimeric Gi protein. The structure provides the rationale for the sequence-activity relation of agonist and antagonist chemokines. The N terminus of agonist chemokines pushes onto specific structural motifs at the bottom of the orthosteric pocket that activate the canonical GPCR microswitch network. This activation mechanism differs substantially from other CC chemokine receptors that bind chemokines with shorter N termini in a shallow binding mode involving unique sequence signatures and a specialized activation mechanism.


Assuntos
Receptores CCR5/química , Receptores CCR5/metabolismo , Quimiocina CCL5/química , Quimiocina CCL5/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Receptores CCR5/agonistas , Receptores CCR5/genética , Transdução de Sinais , Relação Estrutura-Atividade
10.
J Biomol NMR ; 75(1): 25-38, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33501610

RESUMO

G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey ß1-adrenergic receptor (ß1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-ß1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-ß1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.


Assuntos
Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Expressão Gênica , Vetores Genéticos/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Estabilidade Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/isolamento & purificação , Proteínas Recombinantes
11.
Proc Natl Acad Sci U S A ; 117(29): 17211-17220, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611811

RESUMO

The bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a wide range of cellular functions from biofilm formation to growth and survival. Targeting a second-messenger network is challenging because the system involves a multitude of components with often overlapping functions. Here, we present a strategy to intercept c-di-GMP signaling pathways by directly targeting the second messenger. For this, we developed a c-di-GMP-sequestering peptide (CSP) that was derived from a CheY-like c-di-GMP effector protein. CSP binds c-di-GMP with submicromolar affinity. The elucidation of the CSP⋅c-di-GMP complex structure by NMR identified a linear c-di-GMP-binding motif, in which a self-intercalated c-di-GMP dimer is tightly bound by a network of H bonds and π-stacking interactions involving arginine and aromatic residues. Structure-based mutagenesis yielded a variant with considerably higher, low-nanomolar affinity, which subsequently was shortened to 19 residues with almost uncompromised affinity. We demonstrate that endogenously expressed CSP intercepts c-di-GMP signaling and effectively inhibits biofilm formation in Pseudomonas aeruginosa, the most widely used model for serious biofilm-associated medical implications.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Peptídeos/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli , Modelos Moleculares , Mutagênese , Peptídeos/química , Peptídeos/genética , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/metabolismo
12.
Nat Commun ; 11(1): 2216, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371991

RESUMO

Signal transmission and regulation of G-protein-coupled receptors (GPCRs) by extra- and intracellular ligands occurs via modulation of complex conformational equilibria, but their exact kinetic details and underlying atomic mechanisms are unknown. Here we quantified these dynamic equilibria in the ß1-adrenergic receptor in its apo form and seven ligand complexes using 1H/15N NMR spectroscopy. We observe three major exchanging conformations: an inactive conformation (Ci), a preactive conformation (Cp) and an active conformation (Ca), which becomes fully populated in a ternary complex with a G protein mimicking nanobody. The Ci ↔ Cp exchange occurs on the microsecond scale, the Cp ↔ Ca exchange is slower than ~5 ms and only occurs in the presence of two highly conserved tyrosines (Y5.58, Y7.53), which stabilize the active conformation of TM6. The Cp→Ca chemical shift changes indicate a pivoting motion of the entire TM6 that couples the effector site to the orthosteric ligand pocket.


Assuntos
Regulação Alostérica , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Receptores Adrenérgicos beta 1/química , Receptores Acoplados a Proteínas G/química , Algoritmos , Animais , Humanos , Ligantes , Modelos Moleculares , Modelos Teóricos , Ligação Proteica , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Sf9 , Spodoptera
13.
J Chromatogr A ; 1618: 460846, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31980264

RESUMO

Protein purification processes in basic research using ÄKTA™ liquid chromatography systems are often limited to single sample injections and simple one-column purifications. Because many target proteins in structural biology require complex purification protocols the work easily becomes laborious. To streamline and accelerate downstream protein production, an ALIAS™ autosampler and a modular sample in-line dilution process coupled to ion-exchange chromatography were incorporated into the workflow to automate two of the most commonly performed purification strategies - ion-exchange to size exclusion and nickel-ion metal affinity to size exclusion. The chromatographic setup enabled purification of a large array of cytosolic and membrane proteins from small-scale expression cultures produced in insect cells necessary to develop and optimize isotope-labeling strategies for nuclear magnetic resonance spectroscopy applications, resulting in a reduction in experiment time of about 20% per run for both cytosolic and membrane protein purification schemes. However, when queuing multiple samples the throughput increased by 66% and 75%, respectively. In addition, a novel system configuration is presented, where two column valves can be operated independently. This allows for the design of purification loops to increase purity of the target protein.


Assuntos
Cromatografia/métodos , Automação , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas de Membrana/análise
14.
J Am Chem Soc ; 141(42): 16663-16670, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31564099

RESUMO

G protein-coupled receptors (GPCRs) are versatile chemical sensors, which transmit the signal of an extracellular binding event across the plasma membrane to the intracellular side. This function is achieved via the modulation of highly dynamical equilibria of various conformational receptor states. Here we have probed the effect of pressure on the conformational equilibria of a functional thermostabilized ß1-adrenergic GPCR (ß1AR) by solution NMR. High pressure induces a large shift in the conformational equilibrium (midpoint ∼600 bar) from the preactive conformation of agonist-bound ß1AR to the fully active conformation, which under normal pressure is only populated when a G protein or a G protein-mimicking nanobody (Nb) binds to the intracellular side of the ß1AR·agonist complex. No such large effects are observed for an antagonist-bound ß1AR or the ternary ß1AR·agonist·Nb80 complex. The detected structural changes of agonist-bound ß1AR around the orthosteric ligand binding pocket indicate that the fully active receptor occupies an ∼100 Å3 smaller volume than that of its preactive form. Most likely, this volume reduction is caused by the compression of empty (nonhydrated) cavities in the ligand binding pocket and the center of the receptor, which increases the ligand receptor interactions and explains the ∼100-fold affinity increase of agonists in the presence of G protein. The finding that isotropic pressure induces a directed motion from the preactive to the fully active GPCR conformation provides evidence of the high mechanical robustness of this important functional switch.


Assuntos
Modelos Moleculares , Pressão , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Regulação Alostérica , Membrana Celular/metabolismo , Conformação Proteica
15.
Appl Microbiol Biotechnol ; 103(20): 8619-8629, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31396681

RESUMO

The determination of cell viability is essential to many areas of life sciences and biotechnology. Typically, cell viability measurements are based on the optical analysis of stained cells, which requires additional labeling steps and is hard to implement online. Frequency-dependent impedance flow cytometry (IFC) provides a label-free, fast, and reliable alternative to determine cell viability at the single cell level based on the Coulter principle. Here, we describe the application of IFC to eukaryotic cell cultures and compare the results to commonly used staining methods. Yeast cell parameters were assessed in normal and heat-inactivated cells as well as in alcoholic fermentation and long-term batch cultures providing a precise and fast determination of the cell viability and further quantitative measures of the cell culture status. As an important new application, we have investigated recombinant protein production in the widely used baculovirus insect cell expression system. The IFC analysis revealed the presence of a subpopulation of cells, which correlates with the protein expression yield, but it is not detectable with conventional optical cell counters. We tentatively identify this subpopulation as cells in the late phase of infection. Their detection can serve as a predictor for the optimal time point of harvest. The IFC technique should be generally applicable to many eukaryotic cell cultures in suspension, possibly also implemented online.


Assuntos
Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Impedância Elétrica , Células Eucarióticas/fisiologia , Citometria de Fluxo/métodos , Animais , Células Cultivadas , Insetos , Saccharomyces cerevisiae , Fatores de Tempo
16.
J Biol Chem ; 294(7): 2279-2292, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30545941

RESUMO

Substitution of protium (H) for deuterium (D) strongly affects biological systems. Whereas higher eukaryotes such as plants and mammals hardly survive a deuterium content of >30%, many microorganisms can grow on fully deuterated media, albeit at reduced rates. Very little is known about how the H/D replacement influences life at the systems level. Here, we used MS-based analysis to follow the adaptation of a large part of the Escherichia coli proteome from growth on a protonated full medium, over a protonated minimal medium, to a completely deuterated minimal medium. We could quantify >1800 proteins under all conditions, several 100 of which exhibited strong regulation during both adaptation processes. The adaptation to minimal medium strongly up-regulated amino acid synthesis and sugar metabolism and down-regulated translational proteins on average by 9%, concomitant with a reduction in growth rate from 1.8 to 0.67 h-1 In contrast, deuteration caused a very wide proteomic response over many cell functional categories, together with an additional down-regulation of the translational proteins by 5%. The latter coincided with a further reduction in growth rate to 0.37 h-1, revealing a clear linear correlation between growth rate and abundance of translational proteins. No significant morphological effects are observed under light and electron microscopies. Across all protein categories, about 80% of the proteins up-regulated under deuteration are enzymes with hydrogen transfer functions. Thus, the H/D kinetic isotope effect appears as the major limiting factor of cellular functions under deuteration.


Assuntos
Proliferação de Células/efeitos dos fármacos , Deutério/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteoma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteoma/genética
17.
J Biomol NMR ; 71(3): 173-184, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687312

RESUMO

Baculovirus-infected insect cells have become a powerful tool to express recombinant proteins for structural and functional studies by NMR spectroscopy. This article provides an introduction into the insect cell/baculovirus expression system and its use for the production of recombinant isotope-labeled proteins. We discuss recent advances in inexpensive isotope-labeling methods using labeled algal or yeast extracts as the amino acid source and give examples of advanced NMR applications for proteins, which have become accessible by this eukaryotic expression host.


Assuntos
Insetos/citologia , Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Animais , Baculoviridae , Humanos , Insetos/virologia , Marcação por Isótopo/tendências , Proteínas Recombinantes/biossíntese
18.
J Am Chem Soc ; 140(5): 1863-1869, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29319304

RESUMO

The constituent SH3, SH2, and kinase domains of the Abl kinase regulatory core can adopt an assembled (inactive) or a disassembled (active) conformation. We show that this assembly state strictly correlates with the conformation of the kinase activation loop induced by a total of 14 ATP site ligands, comprising all FDA-approved Bcr-Abl inhibiting drugs. The disassembly of the core by certain (type II) ligands can be explained by an induced push on the kinase N-lobe via A- and P-loop toward the SH3 domain. A similar sized P-loop motion is expected during nucleotide binding and release, which would be impeded in the assembled state, in agreement with its strongly reduced kinase activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Ligantes , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas c-abl/química
19.
Elife ; 62017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091032

RESUMO

The flagellar motor is a sophisticated rotary machine facilitating locomotion and signal transduction. Owing to its important role in bacterial behavior, its assembly and activity are tightly regulated. For example, chemotaxis relies on a sensory pathway coupling chemical information to rotational bias of the motor through phosphorylation of the motor switch protein CheY. Using a chemical proteomics approach, we identified a novel family of CheY-like (Cle) proteins in Caulobacter crescentus, which tune flagellar activity in response to binding of the second messenger c-di-GMP to a C-terminal extension. In their c-di-GMP bound conformation Cle proteins interact with the flagellar switch to control motor activity. We show that individual Cle proteins have adopted discrete cellular functions by interfering with chemotaxis and by promoting rapid surface attachment of motile cells. This study broadens the regulatory versatility of bacterial motors and unfolds mechanisms that tie motor activity to mechanical cues and bacterial surface adaptation.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/fisiologia , Quimiotaxia , GMP Cíclico/análogos & derivados , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica , Caulobacter crescentus/química , GMP Cíclico/metabolismo , Flagelos/química , Ligação Proteica , Proteoma/análise
20.
Proc Natl Acad Sci U S A ; 113(37): E5389-98, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27566405

RESUMO

The properties of unfolded proteins are essential both for the mechanisms of protein folding and for the function of the large group of intrinsically disordered proteins. However, the detailed structural and dynamical characterization of these highly dynamic and conformationally heterogeneous ensembles has remained challenging. Here we combine and compare three of the leading techniques for the investigation of unfolded proteins, NMR spectroscopy (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET), with the goal of quantitatively testing their consistency and complementarity and for obtaining a comprehensive view of the unfolded-state ensemble. Using unfolded ubiquitin as a test case, we find that its average dimensions derived from FRET and from structural ensembles calculated using the program X-PLOR-NIH based on NMR and SAXS restraints agree remarkably well; even the shapes of the underlying intramolecular distance distributions are in good agreement, attesting to the reliability of the approaches. The NMR-based results provide a highly sensitive way of quantifying residual structure in the unfolded state. FRET-based nanosecond fluorescence correlation spectroscopy allows long-range distances and chain dynamics to be probed in a time range inaccessible by NMR. The combined techniques thus provide a way of optimally using the complementarity of the available methods for a quantitative structural and dynamical description of unfolded proteins both at the global and the local level.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Desdobramento de Proteína , Proteínas/química , Conformação Proteica , Espalhamento a Baixo Ângulo , Imagem Individual de Molécula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA