Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Soc Psychol ; : 1-13, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696401

RESUMO

The authors are proposing a theoretical model explaining the behavior of individuals tested through experiments on obedience toward authority conducted according to Milgram's paradigm. Their assumption is that the participant faces typical avoidance-avoidance conflict conditions. Participant does not want to hurt the learner in the adjacent room but he or she also does not want to harm the experimenter. The solution to this conflict, entailing hurting on of the two, may be different depending on the spatial organization of the experiment. In the study, experimental conditions were modified, so that the participant was (vs. was not) in the same room as the experimenter and was (vs. was not) in the same room as the learner. Forty individuals (20 women and 20 men) were tested in each of the four experimental conditions. It turns out that the physical presence of the experimenter was conducive to obedience, while the physical presence of the learner reduced it.

2.
Nanoscale ; 16(4): 1692-1702, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38131190

RESUMO

The upconversion phenomenon allows for the emission of nanoparticles (NPs) under excitation with near-infrared (NIR) light. Such property is demanded in biology and medicine to detect or treat diseases such as tumours. The transparency of biological systems for NIR light is limited to three spectral ranges, called biological windows. However, the most frequently used excitation laser to obtain upconversion is out of these ranges, with a wavelength of around 975 nm. In this article, we show an alternative - Tm3+/Er3+-doped NPs that can convert 1208 nm excitation radiation, which is in the range of the 2nd biological window, to visible light within the 1st biological window. The spectroscopic properties of the core@shell NaYF4:Tm3+@NaYF4 and NaYF4:Er3+,Tm3+@NaYF4 NPs revealed a complex mechanism responsible for the observed upconversion. To explain emission in the studied NPs, we propose an energy looping mechanism: a sequence of ground state absorption, energy transfers and cross-relaxation (CR) processes between Tm3+ ions. Next, the excited Tm3+ ions transfer the absorbed energy to Er3+ ions, which results in green, red and NIR emission at 526, 546, 660, 698, 802 and 982 nm. The ratio between these bands is temperature-dependent and can be used in remote optical thermometers with high relative temperature sensitivity, up to 2.37%/°C at 57 °C. The excitation and emission properties of the studied NPs fall within 1st and 2nd biological windows, making them promising candidates for studies in biological systems.

3.
Sci Rep ; 13(1): 14819, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684334

RESUMO

Recently, materials revealing the upconversion (UC) phenomenon, which is a conversion of low-energy photons to higher-energy ones, have attracted considerable attention in luminescence thermometry due to the possibility of precise and remote optical thermal sensing. The most widely studied type of luminescent thermometry uses a ratiometric approach based on changes in the UC luminescence intensity, mainly of lanthanide ions' thermally coupled energy levels. In this work, NaYF4:Ho3+@NaYF4, and NaYF4:Ho3+, Er3+@NaYF4 nanoparticles (NPs) were synthesized by the controlled reaction in oleic acid and octadecene at 573 K. The obtained nanoparticles had hexagonal structures, oval shapes, and average sizes of 22.5 ± 2.2 nm and 22.2 ± 2.0 nm, respectively. The spectroscopic properties of the products were investigated by measurements of the UC emission under 1151 nm laser excitation in the temperature range between 295 to 378 K. The sample doped with Ho3+ and Er3+ ions showed unique behavior of enhancing emission intensity with the temperature. The relative sensitivity determined for the NPs containing Ho3+ and Er3+ ions, reached the maximum value of 1.80%/K at 378 K. Here, we prove that the NaYF4:Ho3+, Er3+@NaYF4 system presents unique and excellent optical temperature sensing properties based on the luminescence intensity ratios of the near-infrared bands of both Ho3+ and Er3+ ions.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123220, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37542873

RESUMO

The properties of upconverting nanoparticles (UCNPs) are crucial for their applications in biomedicine. For studies of organisms and biological materials, the penetration depth of excitation light is also essential as the depth from which the luminescence can be detected. Currently, many researchers are trying to obtain UCNPs with intense emission under excitation wavelengths from the biological transparency windows to increase the penetration depth. However, studies comparing the properties of various types of UCNPs in real conditions are rare. This article shows how deep the 808, 975, 1208, and 1532 nm laser radiation penetrates human blood. Moreover, we determined how thick a layer of blood still permits for observation of the luminescence signal. The measured luminescence properties indicated that the near-infrared light could pass through the blood even to a depth of 7.5 mm. The determined properties of core/shell NaErF4/NaYF4 materials are the most advantageous, and their emission is detectable through 3.0 mm of blood layer using a 1532 nm laser. We prove that the NaErF4/NaYF4 UCNPs can be perfect alternatives for the most studied NaYF4:Yb3+,Er3+/NaYF4. Additionally, the setup proposed in this article can potentially decrease reliance on animal testing in initial biomedicine research.


Assuntos
Nanopartículas , Animais , Humanos , Luminescência , Raios Infravermelhos , Fótons
5.
J Colloid Interface Sci ; 649: 49-57, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37336153

RESUMO

Photon upconversion is an intensively investigated phenomenon in the materials sciences due to its unique applications, mainly in biomedicine for disease prevention and treatment. This study reports the synthesis and properties of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles (NPs) and their applications. The NPs had sizes ranging from 18.5 to 23.7 nm. As a result of the energy transfer between Yb3+ and Tm3+ ions, the synthesized NPs show intense emission in the ultraviolet (UV) range up to 347 nm under 975 nm excitation. The bright emission in the UV range allows for singlet oxygen generation in the presence of hematoporphyrin on the surface of NPs. Our studies show that irradiation with a 975 nm laser of the functionalized NPs allows for the production of amounts of singlet oxygen easily detectable by Singlet Oxygen Sensor Green. The high emission intensity of NPs at 800 nm allowed the application of the synthesized NPs in an upconversion-linked immunosorbent assay (ULISA) for highly sensitive detection of the nucleoprotein from SARS-CoV-2, the causative agent of Covid-19. This article proves that LiYbF4:Tm3+@LiYF4 core@shell nanoparticles can be perfect alternatives for the most commonly studied upconverting NPs based on the NaYF4 host compound and are good candidates for biomedical applications.


Assuntos
COVID-19 , Nanopartículas , Humanos , Oxigênio Singlete , SARS-CoV-2 , COVID-19/diagnóstico , Imunoensaio
6.
Aquat Toxicol ; 259: 106548, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37130483

RESUMO

Various types of nanoparticles (NPs) have been widely investigated recently and applied in areas such as industry, the energy sector, and medicine, presenting the risk of their release into the environment. The ecotoxicity of NPs depends on several factors such as their shape and surface chemistry. Polyethylene glycol (PEG) is one of the most often used compounds for functionalisation of NP surfaces, and its presence on the surfaces of NPs may affect their ecotoxicity. Therefore, the present study aimed to assess the influence of PEG modification on the toxicity of NPs. As biological model, we chose freshwater microalgae, a macrophyte and invertebrates, which to a considerable extent enable the assessment of the harmfulness of NPs to freshwater biota. SrF2:Yb3+,Er3+ NPs were used to represent the broad group of up-converting NPs, which have been intensively investigated for medical applications. We quantified the effects of the NPs on five freshwater species representing three trophic levels: the green microalgae Raphidocelis subcapitata and Chlorella vulgaris, the macrophyte Lemna minor, the cladoceran Daphnia magna and the cnidarian Hydra viridissima. Overall, H. viridissima was the most sensitive species to NPs, which affected its survival and feeding rate. In this case, PEG-modified NPs were slightly more toxic than bare ones (non-significant results). No effects were observed on the other species exposed to the two NPs at the tested concentrations. The tested NPs were successfully imaged in the body of D. magna using confocal microscopy; both NPs were detected in the D. magna gut. The results obtained reveal that SrF2:Yb3+,Er3+ NPs can be toxic to some aquatic species; however, the structures have low toxicity effects for most of the tested species.


Assuntos
Chlorella vulgaris , Elementos da Série dos Lantanídeos , Nanopartículas , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Elementos da Série dos Lantanídeos/farmacologia , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Daphnia
7.
Front Psychol ; 14: 1016125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998361

RESUMO

Numerous experiments have proven that mimicry is highly beneficial (mainly to the mimicker but also to the mimickee). Some studies have shown initial data suggesting the potential of applying this knowledge to business settings. In the present paper we unpack this issue in two ways. First, by presenting potential benefits stemming from mimicry for the mimicking dyad, and second for the business environment represented by the mimicker. Two consecutive studies: a Pretest and a Main Experiment run in natural settings showed great potential in improving the assessments of quality of service provided by verbally mimicking (or not). The results of both studies showed that mimicry offers benefits for the mimicker (increased employee kindness and employee evaluation), and also spillover to the organization/company represented by the mimicking employee (increased opinion of and willingness to return to the shop/hotel). Future research directions and limitations are discussed.

8.
Dalton Trans ; 52(15): 4954-4963, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36951013

RESUMO

A lot of people are interested in optical thermometry, especially the new single-band ratiometric (SBR) technology for measuring temperature. But since SBR thermometry is still in its infancy, it is highly constrained when compared to the conventional dual-band ratiometric approach. In this paper, we propose a new SBR thermometry technique that is based on both the ground and excited state absorption processes. When these two different processes occur, the green emission of Tb3+ in the low-cost host of NaSrGd(MoO4)3 (NSGM) responds to changes in temperature in a way that is the exact opposite of what you would expect. The maximum luminescence intensity was obtained for an optimum terbium concentration of 40% mol. The resulting chromaticity coordinates (x, y) and high correlated color temperature (CCT) values of the doped phosphors give a thermally stable cold emission in the green region with a color purity of about 92%. Using this intriguing characteristic as a foundation, sensitive SBR thermometry has been successfully developed, and the optical properties of the material have also been thoroughly researched. At room temperature, the relative sensitivity reaches its maximum value of 10.9% K-1. These findings may give important information that may be used in the design of new luminescent thermometers that have excellent performance.

9.
Anal Chem ; 95(10): 4753-4759, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916131

RESUMO

The COVID-19 crisis requires fast and highly sensitive tests for the early stage detection of the SARS-CoV-2 virus. For detecting the nucleocapsid protein (N protein), the most abundant viral antigen, we have employed upconversion nanoparticles that emit short-wavelength light under near-infrared excitation (976 nm). The anti-Stokes emission avoids autofluorescence and light scattering and thus enables measurements without optical background interference. The sandwich upconversion-linked immunosorbent assay (ULISA) can be operated both in a conventional analog mode and in a digital mode based on counting individual immune complexes. We have investigated how different antibody combinations affect the detection of the wildtype N protein and the detection of SARS-CoV-2 (alpha variant) in lysed culture fluid via the N protein. The ULISA yielded a limit of detection (LOD) of 1.3 pg/mL (27 fM) for N protein detection independent of the analog or digital readout, which is approximately 3 orders of magnitude more sensitive than conventional enzyme-linked immunosorbent assays or commercial lateral flow assays for home testing. In the case of SARS-CoV-2, the digital ULISA additionally improved the LOD by a factor of 10 compared to the analog readout.


Assuntos
COVID-19 , Imunoadsorventes , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática , Proteínas do Nucleocapsídeo , Anticorpos Antivirais , Sensibilidade e Especificidade
10.
Acta Psychol (Amst) ; 234: 103859, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36780755

RESUMO

Experiments on obedience to authority conducted under the paradigm developed by Milgram have demonstrated that empathy plays either no or a very limited role in determining participants' behaviors. This study proposes that this occurs due to participants empathizing with both "learners" and experimenters. Empathy with learners makes participants withdraw from the experiment, while empathy with experimenters makes them continue. Therefore, the more that participants are characterized by dispositional empathy, the more they are reluctant to hurt learners but, at the same time, the more they try not to disappoint experimenters. This study investigates the effects of empathy being situationally directed toward learners. After manipulating the alleged similarities between "teachers" and "learners" in terms of crucial attitudes and values, the degree to which teachers obeyed experimenters and were willing to electrocute learners was measured. The results confirm that situationally directed empathy reduces participants' obedience to experimenters.


Assuntos
Comportamento Cooperativo , Empatia , Humanos , Personalidade
11.
Front Plant Sci ; 13: 1027608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340372

RESUMO

Pollution of the environment with plastic is an important concern of the modern world. It is estimated that annually over 350 million tonnes of this material are produced, wherein, despite the recycling methods, a significant part is deposited in the environment. The plastic has been detected in the industrial areas, as well as farmlands and gardens in many world regions. Larger plastic pieces degraded in time into smaller pieces including microplastic (MP) and nanoplastic particles (NP). Nanoplastic is suggested to pose the most serious danger as due to the small size, it is effectively taken up from the environment by the biota and transported within the organisms. An increasing number of reports show that NP exert toxic effects also on plants. One of the most common plant response to abiotic stress factors is the accumulation of reactive oxygen species (ROS). On the one hand, these molecules are engaged in cellular signalling and regulation of genes expression. On the other hand, ROS in excess lead to oxidation and damage of various cellular compounds. This article reviews the impact of NP on plants, with special emphasis on the oxidative response.

12.
Carbohydr Polym ; 294: 119782, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868757

RESUMO

The unique properties of upconverting nanoparticles are responsible for their various applications in photonic materials, medicine, analytics, or energy conversion. In this work, the NaErF4:Tm3+@NaYF4 core@shell nanoparticles were synthesized by reaction in high-boiling point solvents and incorporated into cellulose fibers. Nanoparticles showed intense upconversion under 1532 nm excitation wavelength due to Er3+ in their structure. Additional co-doping with Tm3+ ions allowed to shift of the typical green luminescence of Er3+ ions to red especially demanded in anti-counterfeiting applications. The products' composition, morphology, and structure parameters confirmed their requested properties. The article demonstrates that cellulose fibers are suitable carriers of NaErF4:Tm3+@NaYF4 NPs. We also show that the temperature-dependent emission of Er3+ ions allows for the preparation of temperature-sensing cellulose fibers.


Assuntos
Érbio , Nanopartículas , Celulose , Érbio/química , Fluoretos/química , Nanopartículas/química , Temperatura , Ítrio/química
13.
J Law Med ; 29(2): 622-634, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35819396

RESUMO

This study explores explicit justifications for recommendations regarding patients' continuing detention in forensic psychiatric wards. We are interested in what arguments are used in recommendations for the continuing detention of involuntarily committed patients made by assessment teams for legal proceedings. Our frequency analysis shows that assessment teams refer predominantly to arguments related to the mental state of the detainee. When recommending a change of security level, the assessment teams frequently refer to behavioural factors. However, very rarely does such argumentation appear in recommendations for continuation of detention at the same security level. Additionally, our qualitative analysis shows a very high level of certainty with which pronouncements about patients' behaviour are made, typically in the absence of any social/institutional context. Our study shows that assessment teams tend to opt for safe decisions that are unlikely to be challenged by legal proceedings and that allow them full control over the patient.


Assuntos
Internação Involuntária , Internação Compulsória de Doente Mental , Humanos , Polônia
14.
Microorganisms ; 10(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35208886

RESUMO

Anhydrobiosis is the ability of selected organisms to lose almost all water and enter a state of reversible ametabolism. Such an organism dries up to a state of equilibrium with dry air. Unless special protective mechanisms exist, desiccation leads to damage, mainly to proteins, nucleic acids, and membrane lipids. A short historical outline of research on extreme dehydration of living organisms and the current state of research are presented. Terminological issues are outlined. The role of water in the cell and the mechanisms of damage occurring in the cell under the desiccation stress are briefly discussed. Particular attention was paid to damage to proteins, nucleic acids, and membrane lipids. Understanding the nature of the changes and damage associated with desiccation is essential for the study of desiccation-tolerance mechanisms and application research. Difficulties related to the definition of life and the limits of life in the scientific discussion, caused by the phenomenon of anhydrobiosis, were also indicated.

15.
Nanomaterials (Basel) ; 12(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159663

RESUMO

The synthesis of upconverting nanoparticles (NPs) is crucial for their spectroscopic properties and further applications. Reducing the size of materials to nano-dimensions usually decreases emission intensity. Therefore, scientists around the world are trying to improve the methods of obtaining NPs to approach levels of emission intensity similar to their bulk counterparts. In this article, the effects of stearic acid on the synthesis of core@shell ß-NaYF4: 18%Yb3+, 2%Er3+@ß-NaYF4 upconverting NPs were thoroughly investigated and presented. Using a mixture of stearic acid (SA) with oleic acid and 1-octadecene as components of the reaction medium leads to the obtaining of monodispersed NPs with enhanced emission intensity when irradiated with 975 nm laser wavelength, as compared with NPs prepared analogously but without SA. This article also reports how the addition of SA influences the structural properties of core@shell NPs and reaction time. The presence of SA in the reaction medium accelerates the growth of NPs in comparison with the analogic reaction but without SA. In addition, transmission electron microscopy studies reveal an additional effect of the presence of SA on the surface of NPs, which is to cause their self-organization due to steric effects.

16.
Methods Appl Fluoresc ; 10(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008069

RESUMO

Recently, the up-converting (UC) materials, containing lanthanide ions (Ln3+)have attracted considerable attention because of the multitude of their potential applications. The most frequently investigated are UC systems based on the absorption of near-infrared (NIR) radiation by Yb3+ions at around 975-980 nm and emission of co-dopants, usually Ho3+, Er3+or Tm3+ions. UC can be observed also upon excitation with irradiation with a wavelength different than around 980 nm. The most often studied systems capable of UC without the use of Yb3+ion are those based on the properties of Er3+ions, which show luminescence resulting from the excitation at 808 or 1532 nm. However, also other Ln3+ions are worth attention. Herein, we focus on the investigation of the UC phenomenon in the materials doped with Ho3+ions, which reveal unique optical properties upon the NIR irradiation. The SrF2NPs doped with Ho3+ions in concentrations from 4.9% to 22.5%, were synthesized by using the hydrothermal method. The structural and optical characteristics of the obtained SrF2:Ho3+NPs are presented. The prepared samples had crystalline structure, were built of NPs of round shapes and their sizes ranged from 16.4 to 82.3 nm. The NPs formed stable colloids in water. Under 1156 nm excitation, SrF2:Ho3+NPs showed intense UC emission, wherein the brightest luminescence was recorded for the SrF2:10.0%Ho3+compound. The analysis of the measured lifetime profiles and dependencies of the integral luminescence intensities on the laser energy allowed proposing the mechanism, responsible for the observed UC emission. It is worth mentioning that the described SrF2:Ho3+samples are one of the first materials for which the UC luminescence induced by 1156 nm excitation was obtained.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Íons , Luz , Luminescência
17.
J Colloid Interface Sci ; 606(Pt 2): 1421-1434, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492477

RESUMO

The right choice of synthesis route for upconverting nanoparticles (UCNPs) is crucial for obtaining a well-defined product with a specific application capability. Thus we decided to compare the physicochemical, cytotoxic, and temperature-sensing properties of UCNPs obtained from different rare earth (RE) ions, which has been made for the first time in a single study. The core/shell NaYF4:Yb3+,Er3+/NaYF4 UCNPs were obtained by reaction in a mixture of oleic acid and octadecene, and their highly stable water colloids were prepared using the ligand-free modification method. Both oleate-capped and ligand-free UCNPs exhibited a bright upconversion emission upon 975 nm excitation. Moreover, slope values, emission quantum yields, and luminescence lifetimes confirmed an effective energy transfer between the Yb3+ and Er3+ ions. Additionally, the water colloids of the UCNPs showed temperature-sensing properties with a good thermal sensitivity level, higher than 1 % K-1 at 358 K. Evaluation of the cytotoxicity profiles of the obtained products indicated that cell viability was decreased in a dose-dependent manner in the analyzed concentration range.


Assuntos
Nanopartículas , Ácido Oleico , Luminescência , Análise Espectral , Temperatura
18.
Sci Rep ; 11(1): 18846, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552158

RESUMO

Water-dispersible up-converting nanoparticles (UCNPs) are known to be very effective in biomedical applications. Research groups have paid special attention to the synthesis of hydrophilic UCNPs with good physicochemical properties. Being aware of this, we decided to improve the ligand-free modification method of OA-capped NaYF4:Yb3+,Er3+/NaYF4 UCNPs prepared by precipitation in high-boiling-point solvents as the thus-far reported methods do not provide satisfactory results. Different molarities of hydrochloric acid and various mixing times were selected to remove the organic ligand from the NPs' surface and to discover the most promising modification approach. Highly water-stable colloids were obtained with a very high reaction yield of up to 96%. Moreover, the acid treatment did not affect the morphology and the size of the product. All of the crystals exhibited a bright up-conversion emission under 975-nm excitation, which confirmed the two-photon excitation and effective energy transfer between the used dopant ions. Thus, we could establish the most successful ligand-free modification procedure.

19.
J Phys Chem C Nanomater Interfaces ; 125(23): 12650-12662, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34276865

RESUMO

The study provides deep insight into the origin of photocatalytic deactivation of Nb2O5 after modification with ceria. Of particular interest was to fully understand the role of ceria species in diminishing the photocatalytic performance of CeO2/Nb2O5 heterostructures. For this purpose, ceria was loaded on niobia surfaces by wet impregnation. The as-prepared materials were characterized by powder X-ray diffraction, nitrogen physisorption, UV-visible spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. Photocatalytic activity of parent metal oxides (i.e., Nb2O5 and CeO2) and as-prepared CeO2/Nb2O5 heterostructures with different ceria loadings were tested in methanol photooxidation, a model gas-phase reaction. Deep insight into the photocatalytic process provided by operando-IR techniques combined with results of photoluminescence studies revealed that deactivation of CeO2/Nb2O5 heterostructures resulted from increased recombination of photo-excited electrons and holes. The main factor contributing to more efficient recombination of the charge carriers in the heterostructures was the ultrafine size of the ceria species. The presence of such highly dispersed ceria species on the niobia surface provided a strong interface between these two semiconductors, enabling efficient charge transfer from Nb2O5 to CeO2. However, the ceria species supported on niobia exhibited a high defect site concentration, which acted as highly active recombination centers for the photo-induced charge carriers.

20.
Nanoscale ; 13(15): 7322-7333, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889899

RESUMO

Nanoparticles (NPs) based on host compound NaYF4 with core@shell structures were synthesised by the precipitation reaction in high-boiling point octadecene/oleic acid solvent. Four laser wavelengths were used (808, 975, 1208, or 1532 nm) for excitation of the obtained NPs. The resulting emission and mechanisms responsible for spectroscopic properties were studied in detail. Depending on NP compositions, i.e. type of doping ion (Er3+, Tm3+, or Yb3+) or presence of dopants in the same or different phases, adjustable up-conversion (UC) could be obtained with emission peaks covering the visible to near-infrared range (475 to 1625 nm). The presented results demonstrated multifunctionality of the prepared NPs. NaYF4:2%Tm3+@NaYF4 NPs exhibited emission at 700 and 1450 nm under 808 nm laser excitation or 800 and 1625 nm emission under 1208 nm laser radiation, as a result of ground- and excited-state absorption processes (GSA and ESA, respectively). However, NaYF4:5%Er3+,2%Tm3+@NaYF4 NPs showed the most interesting properties, as they can convert all studied laser wavelengths due to the absorption of Tm3+ (808, 1208 nm) or Er3+ ions (808, 975, 1532 nm), revealing a photon avalanche process under 1208 nm laser excitation, as well as GSA and ESA at other excitation wavelengths. The NaYF4:2%Tm3+@NaYF4:5%Er3+ NPs revealed the resultant emission properties, as the dopant ions were separated within core and shell phases. The NaYF4:18%Yb3+,2%Tm3+@NaYF4 and NaYF4:18%Yb3+,2%Tm3+@NaYF4:5%Er3+ samples showed the brightest emission, around 800 nm, under 975 nm excitation, though other laser wavelengths allowed for observation of luminescence, as well, especially in NPs with Er3+ in the outer shell, capable of UC under 1532 nm. The presented results highlight the unique and universal properties of lanthanide ions for designing luminescent NPs for a variety of potential applications, such as confocal microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA