Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(29): e2313991, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692575

RESUMO

DNA double-strand breaks (DSBs) yield highly determines radiotherapy efficacy. However, improving the inherent radiosensitivity of tumor DNA to promote radiation-induced DSBs remains a challenge. Using theoretical and experimental models, the underexplored impact of Z-DNA conformations on radiosensitivity, yielding higher DSBs than other DNA conformations, is discovered. Thereout, a radiosensitization strategy focused on inducing Z-DNA conformation, utilizing CBL@HfO2 nanocapsules loaded with a Z-DNA inducer CBL0137, is proposed. A hollow mesoporous HfO2 (HM-HfO2) acts as a delivery and an energy depositor to promote Z-DNA breakage. The nanocapsule permits the smart DSBs accelerator that triggers its radiosensitization with irradiation stimulation. Impressively, the CBL@HfO2 facilitates the B-Z DNA conformational transition, augmenting DSBs about threefold stronger than irradiation alone, generating significant tumor suppression with a 30% cure rate. The approach enables DSBs augmentation by improving the inherent radiosensitivity of DNA. As such, it opens up an era of Z-DNA conformation manipulation in radiotherapy.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Forma Z , Conformação de Ácido Nucleico , DNA Forma Z/química , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Animais , Camundongos , Nanocápsulas/química , Linhagem Celular Tumoral , Tolerância a Radiação , Radiossensibilizantes/química , Neoplasias/radioterapia
2.
ACS Appl Mater Interfaces ; 16(23): 29917-29929, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813785

RESUMO

Radiotherapy commonly causes damage to healthy tissues, particularly radiation-induced skin injury (RISI) that affects a significant majority of patients undergoing radiotherapy. Effective treatments for RISI are lacking. This study focuses on the pathogenesis of RISI, which primarily involves oxidative stress. Excessive reactive oxygen species (ROS) generation during radiation induces damage to biological macromolecules, triggering oxidative stress and inflammation. To address this, ergothioneine (EGT), a natural and biocompatibile thiol compound with excellent antioxidant activity, is explored as a potential radiation-protective agent. By utilizing its specific transport and absorption in the skin tissue, as well as its efficient and stable clearance of radiation-induced "ROS storm", EGT is combined with sodium hyaluronate (NaHA) to develop a novel radiation protective dressing suitable for the skin. This EGT-NaHA dressing demonstrates an effective ability to scavenge free radicals and reduce oxidative stress in vitro and in vivo, reducing cellular apoptosis and inflammation. These results demonstrate the protective properties of EGT against RISI, with far-reaching implications for research and development in the field of radioprotection.


Assuntos
Bandagens , Ergotioneína , Ácido Hialurônico , Estresse Oxidativo , Protetores contra Radiação , Pele , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ergotioneína/farmacologia , Ergotioneína/química , Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/patologia , Camundongos , Humanos , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Protetores contra Radiação/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/prevenção & controle
3.
Adv Mater ; 35(1): e2204397, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35906814

RESUMO

Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.


Assuntos
Pesquisa Biomédica , Nanoestruturas , Tungstênio , Nanoestruturas/química , Bibliometria , Sistemas de Liberação de Medicamentos/métodos
4.
Chirality ; 34(8): 1094-1119, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676772

RESUMO

The attention to chiral drugs has been raised to an unprecedented level as drug discovery and development strategies grow rapidly. However, separation of enantiomers is still a huge task, which leads to an increasing significance to equip a wider range of expertise in chiral separation science to meet the current and future challenges. In the last few decades, remarkable progress of chiral resolution has been achieved. This review summarizes and classifies chiral resolution methods in analytical scale and preparative scale systematically and comprehensively, including crystallization-based method, inclusion complexation, chromatographic separation, capillary electrophoresis, kinetic resolution, liquid-liquid extraction, membrane-based separation, and especially one bold new progress based on chiral-induced spin selectivity theory. The advances and recent applications will be presented in detail, in which the contents may bring more thinking to wide-ranging readers in various professional fields, from analytical chemistry, pharmaceutical chemistry, natural medicinal chemistry, to manufacturing of drug production.


Assuntos
Cromatografia , Eletroforese Capilar , Eletroforese Capilar/métodos , Preparações Farmacêuticas , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA