Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 28(12): 3251-3269, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34131310

RESUMO

Tumour metastasis is a major reason accounting for the poor prognosis of colorectal cancer (CRC), and the discovery of targets in the primary tumours that can predict the risk of CRC metastasis is now urgently needed. In this study, we identified autophagy-related protein 9B (ATG9B) as a key potential target gene for CRC metastasis. High expression of ATG9B in tumour significantly increased the risk of metastasis and poor prognosis of CRC. Mechanistically, we further find that ATG9B promoted CRC invasion mainly through autophagy-independent manner. MYH9 is the pivotal interacting protein for ATG9B functioning, which directly binds to cytoplasmic peptide segments aa368-411 of ATG9B by its head domain. Furthermore, the combination of ATG9B and MYH9 enhance the stability of each other by decreasing their binding to E3 ubiquitin ligase STUB1, therefore preventing them from ubiquitin-mediated degradation, which further amplified the effect of ATG9B and MYH9 in CRC cells. During CRC cell invasion, ATG9B is transported to the cell edge with the assistance of MYH9 and accelerates focal adhesion (FA) assembly through mediating the interaction of endocytosed integrin ß1 and Talin-1, which facilitated to integrin ß1 activation. Clinically, upregulated expression of ATG9B in human CRC tissue is always accompanied with highly elevated expression of MYH9 and associated with advanced CRC stage and poor prognosis. Taken together, this study highlighted the important role of ATG9B in CRC metastasis by promoting focal adhesion assembly, and ATG9B together with MYH9 can provide a pair of potential therapeutic targets for preventing CRC progression.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Colorretais/genética , Adesões Focais/metabolismo , Proteínas de Membrana/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Metástase Neoplásica , Prognóstico , Análise de Sobrevida
2.
Oncogenesis ; 8(8): 43, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409774

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of tumour-associated mortality worldwide, but no significant improvement in treating HCC has been reported with currently available systemic therapies. Immunotherapy represents a new frontier in tumour therapy. Therefore, the immunobiology of hepatocarcinoma has been under intensive investigation. Decoy receptor 3 (DcR3), a member of the tumour necrosis factor receptor (TNFR) superfamily, is an immune suppressor associated with tumourigenesis and cancer metastasis. However, little is known about the role of DcR3 in the immunobiology of hepatocarcinoma. In this study, we found that overexpression of DcR3 in HCC is mediated by the TGFß3-Smad-Sp1 signalling pathway, which directly targets DcR3 promoter regions. Moreover, overexpression of DcR3 in HCC tissues is associated with tumour invasion and metastasis and significantly promotes the differentiation and secretion of Th2 and Treg cells while inhibiting the differentiation and secretion of Th1 cells. Conversely, knockdown of DcR3 expression in HCC significantly restored the immunity of CD4+ T cells. Inhibition of DcR3 expression may provide a novel immunotherapeutic approach to restoring immunity in HCC patients.

3.
Cancer Biol Ther ; 20(7): 967-978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894065

RESUMO

Nontumour cells in the tumour microenvironment, especially fibroblasts, contribute to tumour progression and metastasis. The occurrence and evolution of colorectal cancer (CRC) is closely related to cancer-associated fibroblasts (CAFs). The aim of this work was to evaluate the effects of the growth factors and cytokines secreted by CAFs on CRC progression. The secreted cytokines were examined in CAFs by Human Cytokine Antibody array. We screened 37 differentially secreted cytokines in the culture supernatants of CAFs and NFs. CLEC3B, attractin, kallikrein 5 and legumain were selected for further verification. CLEC3B was more highly expressed in the stroma of CRC tissues than the other 3 cytokines. Immunohistochemistry revealed that CLEC3B expression was associated with serosal invasion by CRC. Patients with co-expression of CLEC3B and α-SMA had worse survival outcomes than those with only CLEC3B or α-SMA expression. CLEC3B secreted from CAFs may promote tumour migration. Knockdown of endogenous CLEC3B in CAFs markedly decreased CRC cell migration, while recombinant human CLEC3B clearly promoted CRC cell migration and actin remodelling. In conclusion, our findings suggest that CAFs promote the CRC cell migration and skeletal reorganization by secreting CLEC3B. CLEC3B might be a potential therapeutic molecule for CRC treatment.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Lectinas Tipo C/biossíntese , Actinas/metabolismo , Adulto , Idoso , Biomarcadores , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Microambiente Tumoral/genética
4.
Sci Rep ; 7: 46078, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28470188

RESUMO

Response gene to complement 32 (RGC32) is a transcription factor that regulates the expression of multiple genes involved in cell growth, viability and tissue-specific differentiation. However, the role of RGC32 in tumorigenesis and tumor progression in colorectal cancer (CRC) has not been fully elucidated. Here, we showed that the expression of RGC32 was significantly up-regulated in human CRC tissues versus adjacent normal tissues. RGC32 expression was significantly correlated with invasive and aggressive characteristics of tumor cells, as well as poor survival of CRC patients. We also demonstrated that RGC32 overexpression promoted proliferation, migration and tumorigenic growth of human CRC cells in vitro and in vivo. Functionally, RGC32 facilitated epithelial-mesenchymal transition (EMT) in CRC via the Smad/Sip1 signaling pathway, as shown by decreasing E-cadherin expression and increasing vimentin expression. In conclusion, our findings suggested that overexpression of RGC32 facilitates EMT of CRC cells by activating Smad/Sip1 signaling.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Invasividade Neoplásica , Fenótipo , Análise de Sobrevida , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA