Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Food Microbiol ; 416: 110665, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457887

RESUMO

Romaine lettuce in the U.S. is primarily grown in California or Arizona and either processed near the growing regions (source processing) or transported long distance for processing in facilities serving distant markets (forward processing). Recurring outbreaks of Escherichia coli O157:H7 implicating romaine lettuce in recent years, which sometimes exhibited patterns of case clustering in Northeast and Midwest, have raised industry concerns over the potential impact of forward processing on romaine lettuce food safety and quality. In this study, freshly harvested romaine lettuce from a commercial field destined for both forward and source processing channels was tracked from farm to processing facility in two separate trials. Whole-head romaine lettuce and packaged fresh-cut products were collected from both forward and source facilities for microbiological and product quality analyses. High-throughput amplicon sequencing targeting16S rRNA gene was performed to describe shifts in lettuce microbiota. Total aerobic bacteria and coliform counts on whole-head lettuce and on fresh-cut lettuce at different storage times were significantly (p < 0.05) higher for those from the forward processing facility than those from the source processing facility. Microbiota on whole-head lettuce and on fresh-cut lettuce showed differential shifting after lettuce being subjected to source or forward processing, and after product storage. Consistent with the length of pre-processing delays between harvest and processing, the lettuce quality scores of source-processed romaine lettuce, especially at late stages of 2-week storage, was significantly higher than of forward-processed product (p < 0.05).


Assuntos
Escherichia coli O157 , Microbiota , Microbiologia de Alimentos , Lactuca , Escherichia coli O157/genética , Inocuidade dos Alimentos , Contagem de Colônia Microbiana , Manipulação de Alimentos , Contaminação de Alimentos/análise
2.
J Food Prot ; 87(4): 100247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369192

RESUMO

Developing countries such as Ecuador carry a heavy food safety burden but reports on the microbiological quality of their foods are scarce. In this investigation, the microbial diversity of 10 high-risk and mass-consumption street-vended foods including bolones, encebollado, food dressings, ceviche, chopped fruits, fruit juices, fruit salads, cheese, raw chicken, and ground beef in Quito, Guayaquil, and Cuenca, three major population centers in Ecuador, were evaluated using 16S rRNA gene High Throughput Sequencing. In total, 1,840 amplicon sequence variants (ASVs) were classified into 23 phyla, 253 families, 645 genera, and 829 species. In the tested food samples, Proteobacteria and Firmicutes were the most abundant phyla accounting for 97.41% of relative abundance (RA). At genus level, 10 dominant genera were identified: Acinetobacter (12.61% RA), Lactococcus (12.08% RA), Vibrio (8.23% RA), Weissella (7.43% RA), Aeromonas (6.18% RA), Photobacterium (6.32% RA), Pseudomonas (3.92% RA), Leuconostoc (3.51% RA), Klebsiella (3.49% RA), and Cupriavidus (2.86% RA). The highest microbial diversity indices were found in raw chicken, encebollados, fruit salads, and fruit juices from Guayaquil and Cuenca. From sampled foods, 29 species were classified as food spoilage bacteria and 24 as opportunistic pathogenic bacteria. Two groups associated with human diseases were identified, including 11 enteric species and 26 species of fecal bacteria. The occurrence of recognized and opportunistic pathogenic bacteria, as well as enteric and fecal microorganisms, in the street-vended foods indicated extensive risks for the consumers' health. This study demonstrated the application of culture-independent amplicon sequencing in providing a more comprehensive view of microbial safety for street-vended food, which could be a useful tool to facilitate the control of foodborne diseases.


Assuntos
Microbiologia de Alimentos , Vibrio , Animais , Bovinos , Humanos , RNA Ribossômico 16S/genética , Equador , Inocuidade dos Alimentos , Vibrio/genética
3.
Microbiol Spectr ; 12(4): e0376723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363139

RESUMO

The varied choice of bacterial strain, plant cultivar, and method used to inoculate, retrieve, and enumerate Escherichia coli O157:H7 from live plants could affect comparability among studies evaluating lettuce-enterobacterial interactions. Cultivar, bacterial strain, incubation time, leaf side inoculated, and sample processing method were assessed for their influence in recovering and quantifying E. coli O157:H7 from live Romaine lettuce. Cultivar exerted the strongest effect on E. coli O157:H7 counts, which held up even when cultivar was considered in interactions with other factors. Recovery from the popularly grown green Romaine "Rio Bravo" was higher than from the red variety "Outredgeous." Other modulating variables were incubation time, strain, and leaf side inoculated. Sample processing method was not significant. Incubation for 24 hours post-lettuce inoculation yielded greater counts than 48 hours, but was affected by lettuce cultivar, bacterial strain, and leaf side inoculated. Higher counts obtained for strain EDL933 compared to a lettuce outbreak strain 2705C emphasized the importance of selecting relevant strains for the system being studied. Inoculating the abaxial side of leaves gave higher counts than adaxial surface inoculation, although this factor interacted with strain and incubation period. Our findings highlight the importance of studying interactions between appropriate bacterial strains and plant cultivars for more relevant research results, and of standardizing inoculation and incubation procedures. The strong effect of cultivar exerted on the E. coli O157:H7-lettuce association supports the need to start reporting cultivar information for illness outbreaks to facilitate the identification and study of plant traits that impact food safety risk.IMPORTANCEThe contamination of Romaine lettuce with Escherichia coli O157:H7 has been linked to multiple foodborne disease outbreaks, but variability in the methods used to evaluate E. coli O157:H7 association with live lettuce plants complicates the comparability of different studies. In this study, various experimental variables and sample processing methods for recovering and quantifying E. coli O157:H7 from live Romaine lettuce were assessed. Cultivar was found to exert the strongest influence on E. coli O157:H7 retrieval from lettuce. Other modulating factors were bacterial incubation time on plants, strain, and leaf side inoculated, while sample processing method had no impact. Our findings highlight the importance of selecting relevant cultivars and strains, and of standardizing inoculation and incubation procedures, in these types of assessments. Moreover, results support the need to start reporting cultivars implicated in foodborne illness outbreaks to facilitate the identification and study of plant traits that impact food safety risk.


Assuntos
Escherichia coli O157 , Microbiologia de Alimentos , Lactuca , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise
4.
Foodborne Pathog Dis ; 20(12): 563-569, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738333

RESUMO

Due to the phaseout of methyl bromide (MeBr), there is a need for broad-spectrum soil fumigation alternatives for pest management. Little is known about the impact of fumigation alternatives on foodborne pathogens, such as Salmonella, in agricultural soils. This study investigated the effect of MeBr alternative fumigants on Salmonella reduction in soil. Sandy loam soil was collected from a conventional farmed vegetable field and inoculated with either Salmonella Newport J1892 or Typhimurium ATCC 14028 (5.9 ± 0.3 log10 colony-forming unit [CFU]/g). Each of the four fumigants labeled for pest management (1,3-dichloropropene, chloropicrin, dimethyl disulfide, and metam sodium) was applied at labeled maximum application field levels to soil in pots and stored for a 2-week period. Sterile water was used as a control. Following the 2-week period, Salmonella concentrations in soil samples were enumerated at 1, 7, 14, and 21 days postfumigation. The mean concentration of Salmonella Newport was significantly higher than that of Salmonella Typhimurium 1 day after fumigation (p = 0.015). Fumigation using 1,3-dichloropropene or dimethyl disulfide significantly reduced Salmonella Newport and Salmonella Typhimurium concentrations, compared with the sterile water control. The rate of Salmonella reduction in soil treated with dimethyl disulfide was higher (0.17 ± 0.02 log10 CFU/g/day), compared with soil treated with the other fumigants (0.10-0.12 log10 CFU/g/day). Due to the reduction of Salmonella, alternative fumigation treatments may mitigate potential Salmonella contamination in soil within farm environments.


Assuntos
Praguicidas , Salmonella enterica , Solo , Fumigação , Praguicidas/análise , Água
5.
Int J Food Microbiol ; 390: 110121, 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-36807003

RESUMO

Raw carrot is known to have antimicrobial activity against Listeria monocytogenes, but the mechanism of action has not been fully elucidated. In this study, we examined carrot antilisterial activity against several strains of Listeria species (including L. grayi, L. innocua, L. seeligeri, and L. welshimeri) and L. monocytogenes. A representative strain of L. monocytogenes was subsequently used for further characterizing carrot antilisterial activity. Exposure to fresh-cut carrot for 15 min resulted in a similar loss of cultivability, ranging from 2.5 to 4.7 log units, across all Listeria strains evaluated. L. monocytogenes recovered from the fresh-cut surface of different raw carrots was 1.6 to 4.1 log lower than levels obtained from paired boiled carrot samples with abolished antilisterial activity. L. monocytogenes levels recovered from fresh-cut carrot were 2.8 to 3.1 log lower when enumerated by culture-dependent methods than by the culture-independent method of PMAxx-qPCR, a qPCR assay that is performed using DNA pre-treated to selectively sequester DNA from cells with injured membranes. These results suggested that L. monocytogenes loss of cultivability on fresh-cut carrot was not associated with a loss of L. monocytogenes cell membrane integrity and putative cell viability. Transmission electron microscopy imaging revealed that L. monocytogenes rapidly formed mesosome-like structures upon exposure to carrot fresh-cut surface but not upon exposure to boiled carrot surface, suggesting there may be an association between the formation of these mesosome-like structures and a loss of cultivability in L. monocytogenes. However, further research is necessary to conclude the causality of this association.


Assuntos
Daucus carota , Listeria monocytogenes , Listeria , Listeria monocytogenes/genética , Microbiologia de Alimentos , Membrana Celular
6.
Int J Food Microbiol ; 387: 110051, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36516726

RESUMO

Recent outbreaks linked to contaminated leafy greens underline the need for identifying effective natural approaches to improve produce safety at pre-harvest level. Lactic acid bacteria (LAB) have been evaluated as biocontrol agents in food products. In this study, the efficacy of a cocktail of LAB including Lactococcus lactis, Lactiplantibacillus plantarum, Lactobacillus johnsonii, and Lactobacillus acidophilus as pre-harvest biocontrol agents against Listeria and Escherichia coli O157 on lettuce and spinach was investigated. Bacterial pathogens L. monocytogenes and E. coli O157:H7 and the non-pathogenic surrogates L. innocua and E. coli O157:H12 were used to spray-inoculate cultivars of lettuce and spinach grown in growth chamber and in field, respectively. Inoculated plants were spray-treated with water or a cocktail of LAB. On day 0, 3, and 5 post-inoculation, four samples from each group were collected and bacterial populations were determined by serial dilution and spiral plating on selective agars. LAB treatment exhibited an immediate antimicrobial efficacy against L. monocytogenes and E. coli O157:H7 on "Green Star" lettuce by ~2 and ~ 1 log reductions under growth chamber conditions, respectively (P < 0.05). The effect of LAB against E. coli O157:H7 on "New Red Fire" lettuce remained effective during the 5-day period in growth chamber (P < 0.05). Treatment of LAB delivered an effective bactericidal effect against E. coli O157:H12 immediately after application on the field-grown lettuce plants (P < 0.05). Approximately 1 log L. innocua reduction was observed on "Matador" and "Palco" spinach on day 5 (P < 0.05). Results of this study support that LAB could potentially be applied as biocontrol agents for controlling Listeria and E. coli O157 contamination on leafy greens at the pre-harvest level.


Assuntos
Escherichia coli O157 , Lactobacillales , Listeria monocytogenes , Listeria , Lactuca/microbiologia , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Spinacia oleracea/microbiologia , Contagem de Colônia Microbiana
7.
Int J Food Microbiol ; 386: 110043, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495819

RESUMO

Intrinsic characteristics of fresh produce, such as pH, water activity, acid content and nutrient availability are critical factors in determining the survival and growth of Listeria monocytogenes (Lm). In this study, sterile fresh produce juice was used to analyze Lm growth potential among 14 different commodities and to identify physicochemical characteristics in those juices that affect Lm growth. Significant growth of Lm was observed in juices with pH ≥5.6 and low acidity (0.04-0.07 % titratable acidity (TA)) (cantaloupe, carrot, celery, green pepper, parsley, and romaine lettuce), slight reduction of Lm was observed in juices with pH 4.1 (tomato) and pH 3.9 (mango), and no Lm counts were recovered from juices with pH ≤3.8 and high acidity (0.28-1.17 % TA) (apple, blueberry, grape, peach, and pineapple). Although these acidic fruit juices possessed a high sugar content, the pH and acidity of produce juice seemed to be the primary determinants for Lm growth. The neutralization of acidic juices (i.e., Fuji and Gala apple, blueberry, grape, mango, pineapple, peach, and tomato) enabled Lm growth at 37 °C in all juices except for Gala apple and peach. Strong decline in Lm populations in Gala apple, grape and peach juices might be linked to sensitivity to organic acids, such as malic acid. Furthermore, Lm populations significantly decreased in pH-neutral (7.6) cauliflower juice, suggesting that potential antilisterial substances may play a role in Lm decline in cauliflower juice.


Assuntos
Listeria monocytogenes , Malus , Frutas , Verduras , Bebidas/análise , Açúcares , Compostos Orgânicos , Concentração de Íons de Hidrogênio
8.
Food Res Int ; 157: 111170, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761517

RESUMO

Outbreaks and product recalls involving romaine and iceberg lettuce are frequently reported in the United States. Novel technologies are needed to inactivate pathogens without compromising product quality and shelf life. In this study, the effects of a process aid composed of silver dihydrogen citrate, glycerin, and lactic acid (SGL) on Escherichia coli and Listeria monocytogenes concentrations on lettuce immediately after washing and during cold storage were evaluated. Sensory and quality attributes of fresh-cut iceberg lettuce were also evaluated. Laboratory results indicated that application of SGL solution for 30 s as a first step in the washing process resulted in a 3.15 log reduction in E. coli O157:H7 immediately after washing. For E. coli O157:H7 a significant difference between SGL treatment and all other treatments was maintained until day 7. On day zero, SGL led to a 2.94 log reduction of L. monocytogenes. However, there was no significant difference between treatments with or without SGL regardless of storage time. Pilot-plant results showed that samples receiving SGL spray followed by chlorinated flume wash exhibited a greater reduction (1.48 log) in nonpathogenic E. coli populations at the end of shelf life than other treatments (p < 0.05). Additional pilot plant tests were conducted to investigate the hypothesis that SGL residues could continue to impact microbial survival on the final washed lettuce. Results show that pathogens introduced subsequent to flume washing of lettuce pretreated with SGL solution were not affected by antimicrobial residues. The final quality and shelf life of flume washed lettuce were also unaffected by pretreatment with SGL. In conclusion, the results of this study demonstrate that this new technology has the potential to accelerate E. coli die-off on fresh-cut lettuce during cold storage and improve product safety, while not affecting quality throughout the shelf life of the finished products.


Assuntos
Escherichia coli O157 , Lactuca , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Prata
9.
Int J Food Microbiol ; 364: 109531, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033975

RESUMO

Listeria monocytogenes (Lm) outbreaks and recalls associated with fresh produce in recent years have heightened concerns and demands from industry and consumers to more effectively mitigate the contamination risk of this foodborne pathogen on fresh produce. In this study, the growth of Lm and indigenous bacteria on fresh-cut cantaloupe and romaine lettuce held at refrigerated (4 °C) and abusive (10-24 °C) temperatures was determined by both culture dependent and independent methods. Composition and dynamics of bacterial communities on Lm inoculated and non-inoculated samples were analyzed by 16S rRNA high-throughput sequencing. Fresh-cut cantaloupe provided favorable growth conditions for Lm proliferation (1.7 and >6 log increase at refrigerated and abusive temperatures, respectively) to overtake indigenous bacteria. The Lm population also increased on fresh-cut lettuce, but the growth rate was lower than that of the total mesophilic bacteria, resulting in 0.4 and >2 log increase at refrigerated and abusive temperatures. Microbial diversity of fresh-cut cantaloupe was significantly lower than that of fresh-cut romaine lettuce. The Shannon index of microbial communities on cantaloupe declined after storage, but it was not significantly changed on lettuce samples. Shifts in the bacterial microbiome on cantaloupe were mainly affected by Lm inoculation, while both inoculation and storage temperature played significant roles on lettuce bacterial communities. Multiple indigenous bacteria, including Leuconostoc and Weissella spp., were negatively correlated to Lm abundance on romaine lettuce, and were determined by bioassay as potential anti-listerial species. Data derived from this study contribute to better understanding of the relationship between Lm and indigenous microbiota on fresh-cut produce during storage.


Assuntos
Cucumis melo , Listeria monocytogenes , Microbiota , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Manipulação de Alimentos , Microbiologia de Alimentos , Lactuca , RNA Ribossômico 16S , Temperatura
10.
J Food Prot ; 84(1): 128-138, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411929

RESUMO

ABSTRACT: Bacterial foodborne diseases are among the most important public health issues worldwide, but in Ecuador, reports on the microbiological quality of food are scarce. In this cross-sectional study, 450 samples of high-demand Ecuadorian food, including bolon, encebollado, sauces, ceviche, fruit, fruit juice, fruit salad, cheese, raw chicken, and ground beef, were collected from popular street markets in the cities of Guayaquil, Quito, and Cuenca. Populations of total aerobic mesophilic bacteria, total coliforms, fecal coliforms, Escherichia coli, Salmonella enterica, and Listeria monocytogenes were examined on composited samples by plate count following the local regulations (Norma Tecnica Ecuatoriana, Instituto Ecuatoriano de Normalización) for each kind of food. The individual and interaction effects of the city and food type on the levels of each bacterial group were assessed by two-way analysis of variance. Selected colonies from each culture were identified using Biolog OmniLog ID and sequencing of the V3 to V4 region on the 16S rRNA gene. Average total aerobic mesophilic bacteria, total coliform, fecal coliform, and E. coli levels were 5.10 ± 0.12, 2.50 ± 0.16, 1.09 ± 0.12, and 0.83 ± 0.12 log CFU/g or mL, respectively, with significant variations among the cities. The prevalence of Salmonella in chicken and sauces and L. monocytogenes in cheese and fruit salad was greater than 20%. Opportunistic pathogens including Klebsiella pneumoniae, Staphylococcus sciuri, and Enterococcus spp. were frequently identified in the samples from all three cities. High prevalence of spoilage microorganisms such as Bacillus amyloliquefaciens and biocontrol bacteria such as Lactococcus lactis was also observed. This is the first report on the microbiological quality of food from Ecuador.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes , Animais , Bovinos , Cidades , Contagem de Colônia Microbiana , Estudos Transversais , Equador , Escherichia coli , RNA Ribossômico 16S , Staphylococcus
11.
Food Microbiol ; 95: 103677, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397611

RESUMO

Imported papayas from Mexico have been implicated in multiple salmonellosis outbreaks in the United States in recent years. While postharvest washing is a critical process to remove latex, dirt, and microbes, it also has the potential of causing cross-contamination by foodborne pathogens, with sponge or other fibrous rubbing tools often questioned as potential harboring or transmitting risk. In this study, Salmonella inactivation and cross-contamination via sponges and microfiber wash mitts during simulated papaya washing and cleaning were investigated. Seven washing treatments (wash without sanitizer; wash at free chlorine 25, 50, and 100 mg/L, and at peracetic acid 20, 40, and 80 mg/L), along with unwashed control, were evaluated, using Salmonella strains with unique antibiotic markers differentially inoculated on papaya rind (serovars Typhimurium, Heidelberg, and Derby) and on wash sponge or microfiber (serovars Typhimurium, Newport, and Braenderup). Salmonella survival and transfer on papaya and on sponge/microfiber, and in wash water were detected using selective plating or enrichment. The washing and cleaning process reduced Salmonella on inoculated papayas by 1.69-2.66 and 0.69-1.74 log for sponge and microfiber cleaning, respectively, with the reduction poorly correlated to sanitizer concentration. Salmonella on inoculated sponge or microfiber was under detection limit (1.00 log CFU/cm2) by plate count, but remained recoverable by selective enrichment. Transference of Salmonella from inoculated papaya to sponge/microfiber, and vice versa, could be detected sporadically by selective enrichment. Sponge/microfiber mediated Salmonella cross-contamination from inoculated to uninoculated papayas was frequently detectable by selective enrichment, but rendered undetectable by wetting sponge/microfiber in sanitizing wash water (FC 25-100 mg/L or PAA 20-80 mg/L) between washing different papaya fruits. Therefore, maintaining adequate sanitizer levels and frequently wetting sponge/microfiber in sanitizing wash water can effectively mitigate risks of Salmonella cross-contamination associated with postharvest washing, especially with regard to the use of sponge or microfiber wash mitts.


Assuntos
Carica/microbiologia , Cloro/farmacologia , Desinfetantes/farmacologia , Manipulação de Alimentos/instrumentação , Ácido Peracético/farmacologia , Poríferos/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Animais , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Frutas/microbiologia , México , Salmonella typhimurium/crescimento & desenvolvimento
12.
Food Sci Nutr ; 8(7): 3835-3842, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724645

RESUMO

Vibrio parahaemolyticus (Vp) is a common marine halophilic food-borne pathogen, mainly found in seafood and food with a high salt content. Gastrointestinal reactions such as diarrhea, headache, vomiting, nausea, and abdominal cramps may occur after eating food infected with Vp. This study aimed to screen for high-affinity aptamers that specifically recognize Vp. A high-affinity modified aptamer screening kit was used to rapidly screen aptamers of the food-borne Vp. The first round of screening involved release of target aptamers from the microspheres. The "false-positive" aptamers were eliminated after specific binding to and elution of Vp in the second round. The second round of screening of the aptamers involved polymerase chain reaction (PCR), and the abundance of a sequence was determined using next-generation sequencing. Nine high-affinity aptamer sequences were obtained, and the first eight modified aptamer sequences were derived using a cloud-based intelligent software of the American AM Biotech Co. Escherichia coli (E. coli) was used as a control, and aptamer ID 12 with the highest affinity for Vp was selected using real-time PCR. According to the principle of color change caused by nano-gold condensing under salt induction, Salmonella, Listeria monocytogenes (L. monocytogenes), and E. coli were used as counter-screening bacteria, and the aptamer ID12 was combined with nano-gold. The results showed that aptamer ID12 has strong specificity for Vp. Based on these findings, this study developed a simple, innovative, and rapid method for screening Vp aptamers.

13.
Food Microbiol ; 90: 103470, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336351

RESUMO

Particulates of harvest debris are common in tomato packinghouse dump tanks, but their role in food safety is unclear. In this study we investigated the survival of Salmonella enterica and the shifts in relative abundance of culturable mesophilic aerobic bacteria (cMAB) as impacted by particulate size and interaction with chlorine treatment. Particulates suspended in grape tomato wash water spanned a wide size range, but the largest contribution came from particles of 3-20 µm. Filtration of wash water through 330 µm, applied after 100 mg/L free chlorine (FC) wash, reduced surviving cMAB by 98%. The combination of filtration (at 330 µm or smaller pore sizes) and chlorinated wash also altered the cMAB community, with the survivors shifting toward Gram-positive and spore producers (in both lab-simulated and industrial conditions). When tomatoes and harvest debris inoculated with differentially tagged Salmonella were washed in 100 mg/L FC for 1 min followed by filtration, only cells originating from harvest debris survived, with 85 and 93% of the surviving cells associated with particulates larger than 330 and 63 µm, respectively. This suggests that particulates suspended in wash water can protect Salmonella cells from chlorine action, and serve as a vector for cross-contamination.


Assuntos
Cloro/farmacologia , Contaminação de Alimentos/prevenção & controle , Viabilidade Microbiana , Microbiota , Salmonella enterica/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Tamanho da Partícula , Salmonella enterica/fisiologia
14.
Microbiol Resour Announc ; 9(4)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974158

RESUMO

The complete genome sequences of Brevundimonas naejangsanensis strain FS1091 and Bacillus amyloliquefaciens strain FS1092, which were isolated from a commercial fresh-cut-produce-processing facility, were determined. Both FS1091 and FS1092 have one circular chromosome of approximately 3.15 and 4.24 Mb, respectively.

15.
Food Microbiol ; 87: 103359, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948614

RESUMO

Washing in chlorinated water is widely practiced for commercial fresh produce processing. While known as an effective tool for mitigating food safety risks, chlorine washing could also represent an opportunity for spreading microbial contaminations under sub-optimal operating conditions. This study evaluated Salmonella inactivation and cross-contamination in a simulated washing process of cherry and grape tomatoes. Commercially harvested tomatoes and the associated inedible plant matter (debris) were differentially inoculated with kanamycin resistant (KanR) or rifampin resistant (RifR) Salmonella strains, and washed together with uninoculated tomatoes in simulated packinghouse dump tank (flume) wash water. Washing in chlorinated water resulted in significantly higher Salmonella reduction on tomatoes than on debris, achieving 2-3 log reduction on tomatoes and about 1 log reduction on debris. Cross-contamination by Salmonella on tomatoes was significantly reduced in the presence of 25-150 mg/L free chlorine, although sporadic cross-contamination on tomatoes was detected when tomatoes and debris were inoculated at high population density. The majority of the sporadic cross-contaminations originated from Salmonella inoculated on debris. These findings suggested that debris could be a potentially significant source of contamination during commercial tomato washing.


Assuntos
Contaminação de Alimentos/análise , Prunus avium/microbiologia , Salmonella/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Cloro/farmacologia , Manipulação de Alimentos , Microbiologia de Alimentos , Inocuidade dos Alimentos , Salmonella/efeitos dos fármacos
16.
Front Microbiol ; 11: 557289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488530

RESUMO

Outbreaks of foodborne illnesses linked to fresh fruits and vegetables have been key drivers behind a wide breadth of research aiming to fill data gaps in our understanding of the total ecology of agricultural water sources such as ponds and wells and the relationship of this ecology to foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. Both S. enterica and L. monocytogenes can persist in irrigation water and have been linked to produce contamination events. Data describing the abundance of these organisms in specific agricultural water sources are valuable to guide water treatment measures. Here, we profiled the culture independent water microbiota of four farm ponds and wells correlated with microbiological recovery of S. enterica (prevalence: pond, 19.4%; well, 3.3%), L. monocytogenes (pond, 27.1%; well, 4.2%) and fecal indicator testing. Correlation between abiotic factors, including water parameters (temperature, pH, conductivity, dissolved oxygen percentage, oxidation reduction potential, and turbidity) and weather (temperature and rainfall), and foodborne pathogens were also evaluated. Although abiotic factors did not correlate with recovery of S. enterica or L. monocytogenes (p > 0.05), fecal indicators were positively correlated with incidence of S. enterica in well water. Bacterial taxa such as Sphingomonadaceae and Hymenobacter were positively correlated with the prevalence and population of S. enterica, and recovery of L. monocytogenes was positively correlated with the abundance of Rhizobacter and Comamonadaceae (p < 0.03). These data will support evolving mitigation strategies to reduce the risk of produce contamination by foodborne pathogens through irrigation.

17.
Int J Food Microbiol ; 318: 108458, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816526

RESUMO

Fresh produce, as a known or suspected source of multiple foodborne outbreaks, harbors large populations of diverse microorganisms, which are partially released into wash water during processing. However, the dynamics of bacterial communities in wash water during produce processing is poorly understood. In this study, we investigated the effect of chlorine (FC) and peracetic acid (PAA) on the microbiome dynamics in spinach and romaine lettuce rinse water. Treatments with increasing concentrations of sanitizers resulted in convergence of distinct microbiomes. The resultant sanitizer resistant microbiome showed dominant presence by Bacillus sp., Arthrobacter psychrolactophilus, Cupriavidus sp., and Ralstonia sp. Most of the FC and PAA resistant bacteria isolated from spinach and lettuce rinse water after sanitation were gram positive spore forming species including Bacillus, Paenibacillus, and Brevibacillus spp., while several PAA resistant Pseudomonas spp. were also isolated from lettuce rinse water. Inoculation of foodborne pathogens altered the microbiome shift in spinach rinse water under PAA treatment, but not in lettuce rinse water or FC treated samples. These inoculated foodborne pathogens were not isolated among the sanitizer resistant strains.


Assuntos
Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Lactuca/microbiologia , Microbiota/efeitos dos fármacos , Spinacia oleracea/microbiologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Cloro/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Microbiota/genética , Ácido Peracético/farmacologia
18.
Int J Food Microbiol ; 294: 31-41, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30753997

RESUMO

Indigenous bacterial populations in fresh-cut produce processing facilities can have a profound effect on the survival and proliferation of inadvertently contaminating foodborne pathogens. In this study, environmental samples were collected from a variety of Zone 3 sites in a processing plant before and after daily routine sanitation. Viable mesophilic aerobic bacteria population was evaluated using both culturing method and quantitative real-time PCR (qPCR) after propidium monoazide treatment. Zone 3 surface microbiota were analyzed using 16S rRNA gene amplicon sequencing with the Qiime2 bioinformatic pipeline. Over 8000 bacterial species across 4 major phyla were identified in Zone 3 microbiomes in the processing facility. Overall, effective bacterial reduction was observed at the sampling sites on the production floor, while sanitation effect on peripheral surfaces was less evident. Effective sanitation resulted in both quantitative and qualitive shifts of Zone 3 microbiota. Several species were highly abundant at multiple sample sites for both winter and summer samplings. Based on the spatial and temporal distribution of the most abundant species, a Zone 3 core microbiome in the processing facility was tentatively described to included Cupriavidus sp., Pseudomonas sp., Ralstonia sp., Arthrobacter psychrolactophilus, Pseudomonas veronii, Stenotrophomonas sp., and an unknown species of the family Enterobacteriaceae.


Assuntos
Azidas/farmacologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Microbiologia de Alimentos/métodos , Microbiota/efeitos dos fármacos , Propídio/análogos & derivados , Saneamento/métodos , Verduras/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Propídio/farmacologia , RNA Ribossômico 16S/genética , Saneamento/normas
19.
Food Microbiol ; 79: 132-136, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30621868

RESUMO

Describing baseline microbiota associated with agricultural commodities in the field is an important step towards improving our understanding of a wide range of important objectives from plant pathology and horticultural sustainability, to food safety. Environmental pressures on plants (wind, dust, drought, water, temperature) vary by geography and characterizing the impact of these variable pressures on phyllosphere microbiota will contribute to improved stewardship of fresh produce for both plant and human health. A higher resolution understanding of the incidence of human pathogens on food plants and co-occurring phytobiota using metagenomic approaches (metagenome tracking) may contribute to improved source attribution and risk assessment in cases where human pathogens become introduced to agro-ecologies. Between 1990 and 2007, as many as 1990 culture-confirmed Salmonella illnesses were linked to tomatoes from as many as 12 multistate outbreaks (Bell et al., 2012; Bell et al., 2015; Bennett et al., 2014; CDC, 2004; CDC, 2007; Greene et al., 2005a; Gruszynski et al., 2014). When possible, source attribution for these incidents revealed a biogeographic trend, most events were associated with eastern growing regions. To improve our understanding of potential biogeographically linked trends in contamination of tomatoes by Salmonella, we profiled microbiota from the surfaces of tomatoes from Virginia, Maryland, North Carolina and California. Bacterial profiles from California tomatoes were completely different than those of Maryland, Virginia and North Carolina (which were highly similar to each other). A statistically significant enrichment of Firmicutes taxa was observed in California phytobiota compared to the three eastern states. Rhizobiaceae, Sphingobacteriaceae and Xanthobacteraceae were the most abundant bacterial families associated with tomatoes grown in eastern states. These baseline metagenomic profiles of phyllosphere microbiota may contribute to improved understanding of how certain ecologies provide supportive resources for human pathogens on plants and how components of certain agro-ecologies may play a role in the introduction of human pathogens to plants.


Assuntos
Bactérias/isolamento & purificação , Microbiologia de Alimentos , Microbiota/genética , Solanum lycopersicum/microbiologia , Bactérias/classificação , Bactérias/genética , California , Inocuidade dos Alimentos , Maryland , Metagenômica , North Carolina , RNA Ribossômico 16S/genética , Salmonella/classificação , Salmonella/genética , Salmonella/isolamento & purificação , Virginia
20.
Front Microbiol ; 10: 2868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31956319

RESUMO

The Eastern Shore of Virginia (ESV) is a major agricultural region in Virginia and in the past has been linked to some tomato-associated outbreaks of salmonellosis. In this study, water samples were collected weekly from irrigation ponds and wells in four representative vegetable farms (Farms A-D, each farm paired with one pond and one well) and a creek as well. In addition, water samples from two sites in the Chesapeake Bay on the ESV were collected monthly. Poultry litter was sampled monthly from three commercial broiler farms. Soil samples were collected monthly after fertilization with poultry litter from 10 farms in 2014 and another 14 farms in 2015. A most probable number method was used to detect Salmonella enterica presence and concentration in collected samples. Presumptive Salmonella colonies were confirmed by the cross-streaking method. Molecular serotyping was carried out to determine the Salmonella serovars. The average prevalence of Salmonella in pond, well, creek, and bay water samples was 19.3, 3.3, 24.2, and 29.2%, respectively. There were significant spatial and temporal differences for Salmonella incidence in various water sources. The prevalence of S. enterica in four tested ponds from farms A, B, C, and D were 16, 12, 22, and 27%, respectively. While the prevalence of S. enterica in irrigation wells was significantly lower, some well water samples tested positive during the study. Salmonella Newport was found to be the predominant serovar isolated from water samples. All poultry houses of the three tested broiler farms were Salmonella-positive at certain sampling points during the study with prevalence ranging from 14.3 to 35.4%. Salmonella was found to be able to survive up to 4 months in poultry litter amended soils from the tested farms in 2014, and up to 6 months in 2015. This research examined the dynamics of S. enterica in relationship to water source, poultry litter, and amended soil in a major agricultural area, and provides useful information for food safety risk assessments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA